Madhyamik Math Solution Of Chapter 23 | WB Board Class 10 Math Book Solution In Bengali | Koshe Dekhi 23.3 Class 10 | ত্রিকোণমিতিক অনুপাত এবং ত্রিকোণমিতিক অভেদাবলি কষে দেখি ২৩.৩ | কষে দেখি ২৩.৩ ক্লাস ১০ | WBBSE Class 10 (Ten)(X)Math Solution Of Chapter 23

Share this page using :

ত্রিকোণমিতিক অনুপাত এবং ত্রিকোণমিতিক অভেদাবলি কষে দেখি ২৩.৩ | Koshe Dekhi 23.3 Class 10
কষে দেখি - 23.3

ত্রিকোণমিতিক অনুপাত এবং ত্রিকোণমিতিক অভেদাবলি কষে দেখি ২৩.৩ | Koshe Dekhi 23.3 Class 10
আজই Install করুন Chatra Mitra Madhyamik Previous Year Question Paper | মাধ্যমিক বিগত 22 বছরের অঙ্ক প্রশ্নের উত্তরপত্র

1.

(i) \(\sin \theta = \frac{4}{5}\) হলে, \(\frac{{cosec \theta }}{{1 + \cot \theta }}\) এর মান নির্ণয় করে লিখি।
\(\sin \theta = \frac{4}{5}\)
\(\therefore \cos \theta = \sqrt {1 - {{\sin }^2}\theta }\)
= \(\sqrt {1 - {{\left( {\frac{4}{5}} \right)}^2}}\)
\(= \sqrt {1 - \frac{{16}}{{25}}}\)
\(= \sqrt {\frac{9}{{25}}}\)
\(=\sqrt{\frac{25-16}{25}}\)
\(= \frac{3}{5}\)
\(\therefore\) \(\frac{{cosec \theta }}{{1 + \cot \theta }}\)
\(=\frac{\frac{1}{\sin \theta}}{1 + \frac{{\cos \theta }}{{\sin \theta }}}\)
\(=\frac{\frac{1}{4 / 5}}{1+\frac{3 / 5}{4 / 5}}=\frac{\frac{5}{4}}{1+\frac{3}{4}}=\frac{\frac{5}{4}}{\frac{4+3}{4}}=\frac{\frac{5}{4}}{\frac{7}{4}}=\frac{5}{4} \times \frac{4}{7}=\frac{5}{7}\)
\(\therefore\) নির্ণেয় মান \(=\frac{5}{7}\)
(ii) যদি \(\tan \theta = \frac{3}{4}\) হয়, তবে দেখাই যে \(\sqrt {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \) \(=\frac{1}{2}\)
দেওয়া আছে, \(\tan \theta=\frac{3}{4}\)
বা, \(\cot \theta=\frac{4}{3}\)
বা, \(\cot ^{2} \theta=\frac{16}{9}\) [বর্গ করে]
বা, \(\operatorname{cosec}^{2} \theta-1=\frac{16}{9}\)
বা, \(\operatorname{cosec}^{2} \theta=\frac{16}{9}+1\)
বা, \(\operatorname{cosec}^{2} \theta=\frac{16+9}{9}\)
বা, \(\operatorname{cosec}^{2} \theta=\frac{25}{9}\)
বা, \(\frac{1}{\sin ^{2} \theta}=\frac{25}{9}\)
বা, \(\sin ^{2} 0=\frac{9}{25}\)
বা, \(\sin \theta=\sqrt{\frac{9}{25}}\)
বা, \(\sin \theta=\frac{3}{5}\)
এখন, \(\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sqrt{\frac{1-\frac{3}{5}}{1+\frac{3}{5}}}\)
\(=\sqrt{\frac{\frac{5-3}{5}}{\frac{5+3}{5}}}\)
\(=\sqrt{\frac{\frac{2}{5}}{\frac{8}{5}}}=\sqrt{\frac{2}{8}}\)
\(=\sqrt{\frac{1}{4}}=\frac{1}{2}.\)
\(\therefore \sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\frac{1}{2}.\) (প্রমাণিত)
(iii) \( \tan \theta = 1\) হলে \(\frac{{8\sin \theta + 5\cos \theta }}{{{{\sin }^3}\theta - 2{{\cos }^3}\theta + 7\cos \theta }}\) এর মান নির্ণয় করি।
\(\frac{8 \sin \theta+5 \cos \theta}{\sin ^{3} \theta-2 \cos ^{3} \theta+7 \cos \theta}\)
\(=\frac{\left(\frac{8 \sin \theta}{\cos \theta}+\frac{5 \cos \theta}{\cos \theta}\right) \cos \theta}{\left(\frac{\sin ^{3} \theta}{\cos ^{3} \theta}-\frac{2 \cos ^{3} \theta}{\cos ^{3} \theta}+\frac{7 \cos \theta}{\cos ^{3} \theta}\right) \cos ^{3} \theta}\)
\(=\frac{8 \tan \theta+5}{\left(\tan ^{3} \theta-2+\frac{7}{\cos ^{2} \theta}\right) \cos ^{2} \theta}=\frac{(8 \tan \theta+5) \sec ^{2} \theta}{\tan ^{3} \theta-2+7 \sec ^{2} \theta}\)
\(=\frac{(8 \tan \theta+5)\left(1+\tan ^{2} \theta\right)}{\tan ^{3} \theta-2+7\left(1+\tan ^{2} \theta\right)}=\frac{(8 \times 1+5)(1+1)}{1^{3}-2+7\left(1+1^{2}\right)}\left[\because \tan ^{2} \theta=1^{2}=1\right]\)
\(=\frac{(8+5)(2)}{1-2+7(1+1)}=\frac{13 \times 2}{1-2+7 \times 2}\)
\(=\frac{26}{1-2+14}=\frac{26}{13}\)
\(=2.\)
উত্তর : নির্ণেয় মান \(=2.\)

2.

(i) \(cosec\theta\) এবং \(\tan\theta\)-কে \(\sin\theta\)-এর মাধ্যমে প্রকাশ করি।
\(\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\)
\(=1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\)
\( = 1 + {\left( {\frac{{\cos \theta }}{{\sin \theta }}} \right)^2}\)
\(= \frac{{{{\sin }^2}\theta + \cos^2 \theta }}{{{{\sin }^2}\theta }}\)
\(= \frac{1}{{{{\sin }^2}\theta }}\) \(\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]\)
\(\therefore cosec ^2\theta = \frac{1}{{{{\sin }^2}\theta }}\)
বা, \(cosec \theta = \frac{1}{{{{\sin }}\theta }}\)
আবার \({\sec ^2}\theta = 1 + {\tan ^2}\theta \)
বা, \({\tan ^2}\theta = {\sec ^2}\theta - 1,\)
বা, \({\tan ^2}\theta = \frac{1}{{{{\cos }^2}\theta }} - 1\)
বা, \({\tan ^2}\theta = \frac{{1 - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }}\)
বা, \(\tan ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\)
বা, \(\tan \theta = \frac{{\sin \theta }}{{\cos \theta }}\)
বা, \(\tan \theta = \frac{{\sin \theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}\)
\(\therefore\) \(\operatorname{cosec} \theta=\frac{1}{\sin \theta}\)
\(\tan \theta=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\)
(ii) \(cosec \theta \) এবং \(\tan\theta\) কে \(\cos\theta\) -এর মাধ্যমে লিখি।
\({cosec ^2}\theta = 1 + {\cot ^2}\theta \)
\( = 1 + {\left( {\frac{{\cos \theta }}{{\sin \theta }}} \right)^2}\)
\( = 1 + \frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\)
\(= \frac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\)
\(=\frac{1}{\sin ^{2} \theta}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]\)
\(\therefore\) \( coscec{ ^2} = \frac{1}{{{{\sin }^2}\theta }}\)
বা, \(coscec \theta = \frac{1}{{\sin \theta }}\)
বা, \(coscec \theta = \frac{1}{{\sqrt {1 - {{\cos }^2}\theta } }}\)
আবার, \({\sec ^2} = 1 + {\tan ^2}\theta \)
বা, \({\tan ^2}\theta = {\sec ^2}\theta - 1\)
বা, \({\tan ^2}\theta = \frac{1}{{{{\cos }^2}\theta }} - 1\)
বা, \({\tan ^2}\theta = \frac{{1 - \cos ^2\theta }}{{{{\cos }^2}\theta }}\)
বা, \({\tan ^2}\theta = \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\)
বা, \(\left[\because 1-\cos ^{2} \theta=\sin ^{2} \theta\right]\)
বা, \(\tan \theta = \frac{{\sin \theta }}{{\cos \theta }}\)
বা, \(\tan \theta = \frac{{\sqrt {1 - \cos^2 \theta } }}{{\cos \theta }}\)
\(\therefore\) \(\operatorname{cosec} \theta=\frac{1}{\sqrt{1-\cos ^{2} \theta}}\)
\(\tan \theta=\frac{\sqrt{1-\cos ^{2} \theta}}{\cos \theta}\)

3.

(i) \(\sec \theta + \tan \theta = 2\) হলে, \((\sec \theta - \tan \theta )\) এর মান নির্ণয় করি।
আমরা জানি, \(\sec ^{2} \theta-\tan ^{2} \theta=1\)
বা, \((\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1\)
বা, \(2(\sec \theta-\tan \theta)=1[\sec \theta+\tan \theta=2]\)
বা, \(\sec \theta-\tan \theta=\frac{1}{2}.\)
\(\therefore(\sec \theta-\tan \theta)\) -এর মান \(=\frac{1}{2}.\)
(ii) \( cosec \theta - \cot \theta = \sqrt 2 - 1\) হলে \((cosec \theta + \cot \theta) \) -এর মান হিসাব করে লিখি।
\({cosec ^2}\theta - {\cot ^2}\theta = 1\)
বা, \(( cosec \theta + \cot \theta )( cose \theta + \cot \theta ) = 1\)
বা, \( (cosec\theta + \cot \theta ) \times \sqrt (2 - 1) = 1\)
বা, \( cosec \theta + \cot \theta = \frac{1}{{\sqrt 2 - 1}}\)
বা, \( cosec \theta + cot \theta = \frac{{\sqrt 2 + 1}}{{{{(\sqrt 2 )}^2} - {{(1)}^2}}}\)
বা, \(cosec \theta + cot \theta =\frac{\sqrt{2}+1}{2-1}\)
বা, \(cosec \theta + cot \theta = \frac{{\sqrt 2 + 1}}{1}\)
বা, \( cosec \theta + cot \theta = \sqrt 2 + 1\)
\(\therefore\)\((cosec \theta + \cot \theta) \)-এর মান \(=\sqrt{2}+1\)
(iii) \(\sin \theta + cos \theta = 1\) হলে, \(\sin \theta \times \cos \theta \) -এর মান নির্ণয় লিখি।
\({\sin ^2} + cos^2 \theta = 1\)
বা, \({(\sin \theta + \cos \theta )^2} - 2\sin \theta \cos \theta = 1\)
বা, \({(1)^2} - 2\sin \theta \cos \theta = 1\) \([\because \sin \theta+\cos \theta=1]\)
বা, \( - 2\sin \theta \cos \theta = 1 - 1\)
বা, \(-2 \sin \theta \cos \theta=0\)
বা, \(\sin \theta \cos \theta = 0\)
\(\therefore \sin \theta \times \cos \theta-\)এর মান \(= 0\)
(iv) \( \tan \theta + \cot \theta = 2\) হলে, \((\tan \theta - \cot \theta )\) -এর মান নির্ণয় লিখি।
দেওয়া আছে, \(\tan \theta+\cot \theta=2\)
বা, \(\tan \theta+\frac{1}{\tan \theta}=2\)
বা, \(\frac{\tan ^{2} \theta+1}{\tan \theta}=2\)
বা, \(\tan ^{2} \theta+1=2 \tan \theta\)
বা, \(\tan ^{2} \theta-2 \tan \theta+1=0\)
বা, \((\tan \theta)^{2}-2 \times \tan \theta \times 1+(1)^{2}=0\)
বা, \((\tan \theta-1)^{2}=0\)
বা, \(\tan \theta-1=0\)
বা, \(\tan \theta=1.\)
\(\therefore \cot \theta=\frac{1}{\tan \theta}=\frac{1}{1}=1.\)
\(\therefore \tan \theta-\cot \theta=1-1=0.\)
\(\therefore(\tan \theta-\cot \theta)\)-এর মান \(= 0\)
(v) \( \sin \theta - \cos \theta = \frac{7}{{13}}\) হলে \(\sin \theta + \cos \theta \) -এর মান নির্ণয় করি।
প্রথম পদ্ধতি :
\(\because \sin \theta-\cos \theta=\frac{7}{13}\) \(\cdots\) \(\cdots\)(i)
\(\sin \theta+\cos \theta=x\) (ধরা যাক) \(\ldots\) \(\ldots\)(ii)
(i) এবং (ii) বর্গ করে এবং যোগ করে,
\((\sin \theta-\cos \theta)^{2}+(\sin \theta+\cos
\theta)^{2}=\frac{49}{169}+x^{2}\)
\(2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\frac{49}{169}+x^{2}\)
বা, \(2(1)-\frac{49}{169}=x^{2}\)\(\left[\sin ^{2} \theta+\cos ^{2} \theta > 1\right]\)
বা, \(\frac{338-49}{169}=x^{2}\)
বা, \(\frac{289}{169}=x^{2}\)
\(\therefore x=\sqrt{\frac{289}{169}}=\frac{17}{13},[\theta\) হল ধনাত্মক
সুক্ষকোণ, অতএব ধনাত্মক মান নিয়ে]
দ্বিতীয় পদ্ধতি :
যেহেতু, \(\sin \theta-\cos \theta=\frac{7}{13}\)
\(\therefore \quad(\sin \theta-\cos
\theta)^{2}=\left(\frac{7}{13}\right)^{2}=\frac{49}{169}\)
\(\therefore \quad \sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos
\theta=\frac{49}{169}\)
বা, \(1-2 \sin \theta \cos \theta=\frac{49}{169}\)\(\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]\)
বা, \(1-\frac{49}{169}=2 \sin \theta \cos \theta\)
বা, \(\frac{169-49}{169}=2 \sin \theta \cos \theta\)
বা, \(\frac{120}{169}=2 \sin \theta \cos \theta\)
বা, \(\frac{60}{169}=\sin \theta \cos \theta\)
এখন, \((\sin \theta+\cos \theta)^{2}=(\sin \theta-\cos \theta)^{2}+4 \sin \theta
\cos \theta\)
\(=\left(\frac{7}{13}\right)^{2}+4 \times \frac{60}{169}\)
\(=\frac{49}{169}+\frac{240}{169}=\frac{289}{169}\)
\(\therefore(\sin \theta+\cos
\theta)=\sqrt{\frac{289}{169}}=\frac{17}{13},(\because \theta\) ধনাত্মক
সূক্ষকোণ)
\(\therefore \sin \theta+\cos \theta=\frac{17}{13}\) (উত্তর)
(vi) \(\sin \theta \cos \theta = \frac{1}{2}\) হলে, \((\sin \theta + \cos \theta )\) -এর মান হিসাৰ করে লিখি।
\({\sin ^2}\theta + {\cos ^2}\theta = 1\)
বা, \({(\sin \theta + \cos \theta )^2} - 2\sin \theta \cos \theta = 1\)
বা, \({(\sin \theta + \cos \theta )^2} - 2 \times \frac{1}{2} = 1\)\(\left[\because \sin \theta \cos \theta=\frac{1}{2}\right]\)
বা, \((\sin \theta + \cos \theta)^2 = 1 + 1 = 2\)
বা, \(\sin \theta + \cos \theta = \sqrt 2 \)
\(\therefore\) নির্ণেয় \((\sin \theta+\cos \theta)\)-এর মান \(=\sqrt{2}\)
(vii) \( \sec \theta - \tan \theta = \frac{1}{{\sqrt 3 }}\) হলে, \(\sec \theta \) এবং \(\tan\theta\) উভয়ের মান নির্ণয় করি।
\({\sec ^2}\theta - {\tan ^2}\theta = 1\)
দেওয়া আছে, \( \sec \theta - \tan \theta = \frac{1}{{\sqrt 3 }}\)........ (i)
আমরা জানি, \(\sec ^{2} \theta \ln ^{3} \tan ^{2} \theta=1\)
বা, \((\sec \theta + \tan \theta )(\sec \theta - \tan \theta ) = 1\)
বা, \((\sec \theta + \tan \theta ) \times \frac{1}{{\sqrt 3 }} = 1\)
বা, \(\sec \theta + \tan \theta = \sqrt 3\)...........(ii)
(i)+(ii) করে পাই,
\(\sec \theta-\tan \theta+\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}+\sqrt{3}\)
বা, \(2\sec \theta = \sqrt 3 + \frac{1}{{\sqrt 3 }}\)
বা, \(2\sec \theta = \frac{{3 + 1}}{{\sqrt 3 }}\)
বা, \(2 \sec \theta=\frac{4}{\sqrt{3}}\)
বা, \(\sec \theta = \frac{4}{{\sqrt 3 \times 2}}\)
বা, \(\sec \theta = \frac{2}{{\sqrt 3 }}\)
(ii) নং সমীকরণে \(\sec \theta \)-এর মান বসিয়ে পাই,
\(\sec \theta + \tan \theta = \sqrt 3 \)
বা, \(\tan \theta = \sqrt 3-\frac{2}{{\sqrt 3 }}\)
বা, \(\tan \theta = \frac{{3 - 2}}{{\sqrt 3 }}\)
বা, \(\tan \theta = \frac{1}{{\sqrt 3 }}\)
\(\therefore \sec \theta-\) এর মান \(\frac{2}{\sqrt{3}}\) ও \(\tan \theta\)-এর মান \(=\frac{1}{\sqrt{3}}\)
(viii) \( cosec \theta + \cot \theta = \sqrt 3 \) হলে \(cosec\theta\) ও \(\cot\theta\) এর মান নির্ণয় করি।
আমারা জানি, \({cosec ^2}\theta - {\cot ^2}\theta = 1\) দেওয়া আছে \(cosec \theta + \cot \theta = \sqrt 3 \ldots (i)\)
বা, \(\left( {{{cosec }}\theta + \cot \theta } \right)( cosec \theta -\cot \theta) = 1 \)
বা, \( \sqrt 3 (cosec \theta - \cot \theta ) = 1\)
বা, \(cosec \theta - \cot \theta = \frac {1}{\sqrt 3} \ldots \ldots ({\rm{ii}})\)
(i) ও (ii) যোগ করিয়া পাই,
\(\operatorname{cosec} \theta+\cot \theta+\operatorname{cosec} \theta-\cot \theta=\sqrt{3}+\frac{1}{\sqrt{3}}\)
বা, \(2 cosec \theta = \sqrt 3 + \frac{1}{\sqrt 3 }\)
\( = \frac{{3 + 1}}{{\sqrt 3 }} = \frac{4}{{\sqrt 3 }}\)
বা, \(\operatorname{cosec} \theta=\frac{4}{\sqrt{3} \times 2}\)
বা, \(cosec \theta = \frac{2}{{\sqrt 3 }}\)
(i) নং সমীকরণে \(cosec \theta = \frac{2}{{\sqrt 3 }}\) বসিয়ে পাই
\(cosec \theta - \cot \theta = \frac{1}{{\sqrt 3 }}\)
বা, \(\frac{2}{{\sqrt 3 }} - \cot \theta = \frac{1}{{\sqrt 3 }}\)
বা, \( \cot \theta = \frac{{2}}{{\sqrt 3 }}-\frac{1}{{\sqrt 3 }} \)
বা, \(\cot \theta=\frac{2-1}{\sqrt{3}}\)
বা, \(\cot \theta = \frac{1}{{\sqrt 3 }}\)
\(\therefore\) \(\operatorname{cosec} \theta\)-এর মান \(=\frac{2}{\sqrt{3}}\)
\(\cot \theta\)-এর মান \(=\frac{1}{\sqrt{3}}\)
(ix) \( \frac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }} = 7\) হলে, \(\tan\theta\) এর মান হিসাব করে লিখি।
দেওয়া আছে, \(\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=7\)

বা, \(\frac{\sin \theta+\cos \theta+\sin \theta-\cos \theta}{\sin \theta+\cos \theta-\sin \theta+\cos \theta}=\frac{7+1}{7-1}\)(যোগ-ভাগ প্রক্রিয়া)

বা, \(\frac{2 \sin \theta}{2 \cos \theta}=\frac{8}{6}\)
বা, \(\frac{\sin \theta}{\cos \theta}=\frac{4}{3}\)
বা, \(\tan \theta=\frac{4}{3}=1 \frac{1}{3}.\)

\(\therefore\) \(\tan \theta\)-এর নির্ণেয় মান \(=1 \frac{1}{3}.\)
(x) \( \frac{{cosec \theta + \sin \theta }}{{cosec \theta - \sin \theta }} = \frac{5}{2}\) হলে, \( \sin\theta\) এর মান হিসাব করে লিখি।
\(\frac{{cosec \theta + \sin \theta }}{{cosec \theta - \sin \theta }} = \frac{5}{3}\)
বা, \(5cosec \theta - 5\sin \theta = 3cosec \theta + 3\sin \theta \)
বা, \(5cosec \theta - 3cosec \theta = 3\sin \theta + 5\sin \theta \)
বা, \(2cosec \theta = 8\sin \theta \)
বা, \(\frac{1}{{\sin \theta }} = 8\sin \theta \)
বা, \(8{\sin ^2}\theta = 2\)
বা, \({\sin ^2}\theta = \frac{2}{8}\)
বা, \({\sin ^2}\theta = \frac{1}{4}\)
বা, \(\sin \theta = \frac{1}{2}\)
(xi) \(\sec \theta + \cos \theta = \frac{5}{2}\) হলে \((\sec \theta-\cos \theta)\) এর মান হিসাব করে লিখি।
\(\sec \theta+\cos \theta=\frac{5}{2}\)
বা, \((\sec \theta+\cos \theta)^{2}=\left(\frac{5}{2}\right)^{2}\) [বর্গ করে ]
বা, \((\sec \theta-\cos \theta)^{2}+4 \sec \theta \cdot \cos \theta=\frac{25}{4}\)
বা, \((\sec \theta-\cos \theta)^{2}+4 \cdot \frac{1}{\cos \theta} \cdot \cos \theta=\frac{25}{4}\left[\because \sec \theta=\frac{1}{\cos \theta}\right]\)
বা, \((\sec \theta-\cos \theta)^{2}+4=\frac{25}{4}\)
বা, \((\sec \theta-\cos \theta)^{2}=\frac{25}{4}-4\)
বা, \((\sec \theta-\cos \theta)^{2}=\frac{25-16}{4}\)
বা, \((\sec \theta-\cos \theta)^{2}=\frac{9}{4}\)
বা, \(\sec \theta-\cos \theta=\sqrt{\frac{9}{4}}\)
বা, \(\sec \theta-\cos \theta=\frac{3}{2}.\)
\(\therefore (\sec \theta-\cos \theta)\)- এর মান \(=\frac{3}{2}=1 \frac{1}{2}\).
(xii) \( 5{\sin ^2\theta} + 4\cos^2 \theta = \frac{9}{2}\) সম্পর্কটি থেকে tan\(\theta\) এর মান নির্ণয় করি।
\(5 \sin ^{2} \theta+4 \cos ^{2} \theta=\frac{9}{2}\)
বা, \(10 \sin ^{2} \theta+8 \cos ^{2} \theta=9\)
বা, \(\frac{10 \sin ^{2} \theta}{\cos ^{2} \theta}+8=\frac{9}{\cos ^{2} \theta}\) [উভয়দিকে \(\cos ^{2} \theta\) দ্বারা ভাগ করে]
বা, \(10 \tan ^{2} \theta+8=9\left(1+\tan ^{2} \theta\right)\)
বা, \(10 \tan ^{2} \theta+8=9 \sec ^{2} \theta\)
বা, \(10 \tan ^{2} \theta+8=9+9 \tan ^{2} \theta\)
বা, \(10 \tan ^{2} \theta-9 \tan ^{2} \theta=9-8 \quad\)
বা, \(\tan ^{2} \theta=1\)
বা, \((\tan \theta)^{2}=(\pm 1)^{2}\)
বা, \(\tan \theta=1\) অথবা \(\tan \theta=-1\)
যেহেতু \(\theta\) ধনাত্মক সূক্ষ্মকোণ, \(\therefore \tan \theta=1\) হবে, \(\tan \theta\) এর \(-1\) মান বর্জনীয়।
\(\therefore \quad \tan \theta=1\) এই গ্রহণযােগ্য মান।
উত্তর : \(\tan \theta\) এর মান = 1
ত্রিকোণমিতিক অনুপাত এবং ত্রিকোণমিতিক অভেদাবলি কষে দেখি ২৩.৩ | Koshe Dekhi 23.3 Class 10
আজই Install করুন Chatra Mitra Madhyamik Previous Year Question Paper | মাধ্যমিক বিগত 22 বছরের অঙ্ক প্রশ্নের উত্তরপত্র
(xiii) \({\tan ^2}\theta + {\cot ^2}\theta = \frac{{10}}{3}\) হলে \(\tan\theta + \cot\theta\) এবং \(\tan\theta – \cot\theta\) -এর মান নির্ণয় করি এবং সেখান থেকে \(\tan\theta\)-এর মান হিসাব করে লিখি।
\(\tan ^{2} \theta+\cot ^{2} \theta=\frac{10}{3}\)
বা, \((\tan \theta)^{2}+(\cot \theta)^{2}=\frac{10}{3}\)
বা, \((\tan \theta+\cot \theta)^{2}-2 \tan \theta \cdot \cot \theta=\frac{10}{3}\)
বা, \((\tan \theta+\cot \theta)^{2}-2 \tan \theta \cdot \frac{1}{\tan \theta}=\frac{10}{3}\)\(\left[\cot \theta=\frac{1}{\tan \theta}\right]\)
বা, \((\tan \theta+\cot \theta)^{2}-2=\frac{10}{3}\)
বা, \((\tan \theta+\cot \theta)^{2}=\frac{10}{3}+2=\frac{16}{3}\)
বা, \(\tan \theta+\cot \theta=\sqrt{\frac{16}{3}}=\frac{4}{\sqrt{3}}\)
\(\therefore \tan \theta+\cot \theta=\frac{4}{\sqrt{3}}\) \(\ldots (1)\)
আবার, \(\tan ^{2} \theta+\cot ^{2} \theta=\frac{10}{3}\)
বা, \((\tan \theta)^{2}+(\cot \theta)^{2}=\frac{10}{3}\)
বা, \((\tan \theta-\cot \theta)^{2}+2 \tan \theta \times \cot \theta=\frac{10}{3}\)
বা, \((\tan \theta-\cot \theta)^{2}+2 \tan \theta \times \frac{1}{\tan \theta}=\frac{10}{3}\) \(\left[\because \cot \theta=\frac{1}{\tan \theta}\right]\)
বা, \((\tan \theta-\cot \theta)^{2}+2=\frac{10}{3}\)
বা, \((\tan \theta-\cot \theta)^{2}=\frac{10}{3}-2\)
বা, \((\tan \theta-\cot \theta)^{2}=\frac{10-6}{3}\)
বা, \((\tan \theta-\cot \theta)^{2}=\frac{4}{3}\)
বা, \(\tan \theta-\cot \theta=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}\)\(\ldots (2)\)
\(\therefore \tan \theta+\cot \theta=\frac{4}{\sqrt{3}}\)
এবং \(\tan \theta-\cot \theta=\frac{2}{\sqrt{3}}.\)
এখন, (1) ও (2) যােগ করে পাই,
\(\tan \theta+\cot \theta+\tan \theta-\cot \theta\)\(=\frac{4}{\sqrt{3}}+\frac{2}{\sqrt{3}}\)
\(2 \tan \theta=\frac{4}{\sqrt{3}}+\frac{2}{\sqrt{3}}\)
বা, \(2 \tan \theta=\frac{4+2}{\sqrt{3}}\)
বা, \(2 \tan \theta=\frac{6}{\sqrt{3}}\)
বা, \(\tan \theta=\frac{6}{\sqrt{3} \times 2}\)
বা, \(\tan \theta=\frac{3}{\sqrt{3}}=\sqrt{3}\)
\(\therefore \tan \theta\) - এর মান \(=\sqrt{3}\).
(xiv) \({\sec ^2}\theta + {\tan ^2}\theta = \frac{{13}}{{12}}\) হলে \(\left(\sec ^{4} \theta-\tan ^{4} \theta\right)\)-এর মান হিসাব করে লিখি।
\({\sec ^2}\theta + {\tan ^2}\theta = \frac{{13}}{{12}}\)
\({\sec ^4}\theta - {\tan ^4}\theta\)
\(= {\left( {{{\sec }^2}\theta } \right)^2} - {\left( {{{\tan }^2}\theta } \right)^2}\)
\( = \left( {{{\sec }^2}\theta + {{\tan }^2}\theta } \right)\) \(\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\)
= \(\frac{{13}}{{12}} + 1 = \frac{{13}}{{12}}\)
\(=\frac{13}{12} \times 1\left[\sec ^{2} \theta-\tan ^{2} \theta=1\right]=\frac{13}{12}\)
\(\therefore\) নির্ণেয় মান \(=\frac{13}{12}\)

4.

(i) PQR ত্রিভূজে \(\angle Q \) সমকোণ। \(PR = \sqrt 5 \) একক এবং \({\rm{P Q - R Q = 1}}\) একক হলে \(\cos P - \cos R\)-এর মান নির্ণয় করি।

\(\triangle PQR\)-এবং \(\angle Q=90^{\circ}\),
\(\therefore \mathbf{P R}=\) অতিভুজ
এখন, \(\cos P-\cos R\)
\(=\frac{P Q}{P R}-\frac{R Q}{P R}[\operatorname{cosP}\) এবং \(\cos R\)-এর সংজ্ঞানুসারে )
\(=\frac{\mathrm{PQ}-\mathrm{RQ}}{\mathrm{PR}}\)
\(=\frac{1}{\sqrt{5}}[\because P Q-R Q=1\) এবং \(\quad P R=\sqrt{5}]\)
\(\therefore \cos P-\cos R=\frac{1}{\sqrt{5}}\)।
(ii) \(xyz\) ত্রিভুজে \(\angle y\) সমকোণ। \(xy = 2\sqrt 3 \) একক এবং \({\rm{X Z - Y Z = 2}}\) একক হলে, \((\sec X - \tan X)\) এর মান নির্ণয় করি।

\(\triangle XYZ\) -এ \(\angle \mathrm{Y}=90^{\circ}\).
\(\therefore \mathrm{XZ}=\) অতিভুজ।
এখন, \(\sec X-\tan X\)
\(\frac{ \mathrm{XZ}}{\mathrm{XY}}-\frac{Y\mathrm{X}}{\mathrm{XY}}\) [\(\sec X \) এবং \(\tan X\) -এর সংজ্ঞানুসারে ]
\(=\frac{\mathrm{XZ}-\mathrm{YZ}}{\mathrm{XY}}\)
\(=\frac{2}{2 \sqrt{3}} \quad[\because \mathrm{XZ}-\mathrm{YZ}=2\) এবং \(X Y=2 \sqrt{3}]\)
\(=\frac{1}{\sqrt{3}}.\)
\(\therefore \sec X-\tan X=\frac{1}{\sqrt{3}}.\)

5. সম্পর্কগুলি থেকে '\(\theta\)' কে অপনয়ন করি

(i) \( x = 2\sin \theta \quad y = 3{\rm{cose}}\theta\)
\(x = 2\sin \theta \ldots\) ...(i)
\(y = 3\cos \theta \ldots...(ii)\)
(i) হইতে \(\frac{x}{2} = \sin \theta \ldots....(iii)\)
(ii) হইতে পাই \( \frac{y}{3} = \cos \theta \ldots ....(iv)\)
(iii) ও (iv) নং সমীকরণ বর্গকে যোগ করিয়া পাই,
\(\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=\sin ^{2} \theta+\cos ^{2} \theta\)
\(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9}\) = \({\sin ^2}\theta + {\cos ^2}\theta\)
বা, \( \frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1\)
(ii) \( 5x = 3\sec \theta, y = 3\tan \theta \)
দেওয়া আছে, \(5 x=3 \sec \theta\)
বা, \(\frac{5 x}{3}=\sec \theta\)
বা, \(\left(\frac{5 x}{3}\right)^{2}=\sec ^{2} \theta\)
বা, \(\frac{25 x^{2}}{9}=\sec ^{2} \theta\) \(\ldots(1)\)
আবার, \(y=3 \tan \theta\)
বা, \(\frac{y}{3}=\tan \theta\)
বা, \(\left(\frac{y}{3}\right)^{2}=\tan ^{2} \theta\)
বা, \(\frac{y^{2}}{9}=\tan ^{2} \theta\) \(\ldots(2)\)
এখন, (1) থেকে, (2) বিয়ােগ করে পাই,
\(\frac{25 x^{2}}{9}-\frac{y^{2}}{9}=\sec ^{2} \theta-\tan ^{2} \theta\)
বা, \(\frac{25 x^{2}}{9}-\frac{y^{2}}{9}=1\)\(\left[\sec ^{2} \theta-\tan ^{2} \theta=1\right]\)
বা, \(\frac{25 x^{2}-y^{2}}{9}=1\)
বা, \(25 x^{2}-y^{2}=9\)
\(\therefore\) \(\theta\) আপনয়ন করে পাই \(25 x^{2}-y^{2}=9.\)

6.

(i) যদি Sin\(\alpha = \frac{5}{{13}}\) হয়, তাহলে দেখাই যে \(\tan \alpha + \sec \alpha = 1.5\)
দেওয়া আছে, \(\sin \alpha=\frac{5}{13}\)
\(\therefore \cos \alpha=\sqrt{1-\sin ^{2} \alpha}\)
\(=\sqrt{1-\left(\frac{5}{13}\right)^{2}}\)\([\because\) sin \alpha =\frac{5}{13}]\)
\(=\sqrt{1-\frac{25}{169}}\)
\(=\sqrt{\frac{169-25}{169}}\)
\(=\sqrt{\frac{144}{169}}=\frac{12}{13}.\)
এখন, \(\tan \alpha+\sec \alpha=\frac{\sin \alpha}{\cos \alpha}+\frac{1}{\cos \alpha}\)
\(=\frac{\frac{5}{13}}{\frac{12}{13}}+\frac{1}{\frac{12}{13}}\)
\(=\frac{5}{13} \times \frac{13}{12}+1 \times \frac{13}{12}\)
\(=\frac{5}{12}+\frac{13}{12}\)
\(=\frac{5+13}{12}=\frac{18}{12}\)
\(=\frac{3}{2}=1 \cdot 5\)
\(\therefore \tan \alpha+\sec \alpha=1.5\) (প্রমাণিত)
(ii) যদি \(\tan A = \frac{n}{m}\) হয়, তাহলে \(sin A\) এবং \(sec A\) উভয়ের মান লিখি ।
দেওয়া আছে, \(\tan \mathrm{A}=\frac{n}{m}\)
ৰা, \(\tan ^{2} \mathrm{~A}=\frac{n^{2}}{m^{2}}\) [ বর্গ কর]
বা, \(1+\tan ^{2} A=1+\frac{n^{2}}{m^{2}}\) [উভয় দিকে 1 যোগ করে]
বা, \(\operatorname{sec}^{2} \mathrm{~A}=\frac{m^{2}+n^{2}}{m^{2}}\)
বা, \(\sec A=\sqrt{\frac{m^{2}+n^{2}}{m^{2}}}\)
বা, \(\sec \mathrm{A} = \frac{\sqrt{m^{2}+n^{2}}}{m}\)
আবার, \(\tan \mathrm{A}=\frac{n}{m}\)
বা, \(\cot \mathrm{A}=\frac{m}{n}\)
বা, \(\cot ^{2} \mathrm{~A}=\frac{m^{2}}{n^{2}}\) [ বর্গ করে]
বা, \(\operatorname{cosec}^{2} \mathrm{~A}-1=\frac{m^{2}}{n^{2}}\) \(\left[\cot ^{2} A=\operatorname{cosec}^{2} A-1\right]\)
বা, \(\operatorname{cosec}^{2} \mathrm{~A}=\frac{m^{2}}{n^{2}}+1\)
বা, \(\operatorname{cosec}^{2} \mathrm{~A}=\frac{m^{2}+n^{2}}{n^{2}}\)
বা, \(\operatorname{cosec} A=\sqrt{\frac{m^{2}+n^{2}}{n^{2}}}\)
বা, \(\operatorname{cosec} \mathrm{A}=\frac{\sqrt{m^{2}+n^{2}}}{n}\)
বা, \(\sin \mathrm{A}=\frac{n}{\sqrt{m^{2}+n^{2}}}\)
\(\therefore \sin \mathrm{A}=\frac{n}{\sqrt{m^{2}+n^{2}}}\)
এবং \(\sec \mathrm{A}=\frac{\sqrt{m^{2}+n^{2}}}{m}\)
(iii) যদি \(\cos \theta = \frac{x}{{\sqrt {{x^2} + {y^2}} }}\) হয়, তাহলে দেখাই যে, \(x\sin \theta = y\cos \theta \)
যেহেতু \(\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}\)
অতএব \(\sin ^{2} \theta=1-\cos ^{2} \theta\)
\(=1-\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}\)
\(=1-\frac{x^{2}}{x^{2}+y^{2}}=\frac{y^{2}}{x^{2}+y^{2}}\)
বা, \(\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}\) (ধনাত্মক মানটি নিয়ে)
বা, \(x \sin \theta=\frac{x y}{\sqrt{x^{2}+y^{2}}}\) (উভয়দিকে \(x\) গুন করে)
আবার, \(y \cos \theta=\frac{x y}{\sqrt{x^{2}+y^{2}}}\) (উভয়দিকে \(y\) গুন করে)
সুতরাং \(x \sin \theta=y \cos \theta\) (প্রমাণিত)।
(iv) যদি \(\sin \alpha = \frac{{{a^2} - {b^2}}}{{ {{a^2} + {b^2}} }}\) হয় তাহলে দেখাই যে \(\cot \alpha = \frac{{2ab}}{{{a^2} + {b^2}}}\)
\(\cos \theta = \sqrt {1 - \sin \theta } \)
\( = \sqrt {1 - {{\left( {\frac{{{a^2} - {b^2}}}{{{a^2} + {b^2}}}} \right)}^2}} \)
\(= \sqrt {1 - \frac{{{{\left( {{a^2} - {b^2}} \right)}^2}}}{{{{\left( {{a^2} + {b^2}} \right)}^2}}}}\)
\( = \sqrt {\frac{{{{\left( {{a^2} + {b^2}} \right)}^2} - \left( {{a^2} - {b^2}} \right)^2}}{{{{\left( {{a^2} + {b^2}} \right)}^2}}}} \)
\( = \sqrt {\frac{{4{a^2}{b^2}}}{{{{\left( {{a^2} + {b^2}} \right)}^2}}}}\)
\( = {\frac{{2ab}}{{{a^2} + {b^2}}}} \)
বামপক্ষ \(\cot \theta \) \( = \frac{{\cos \theta }}{{\sin \theta }}\)
\(= \frac{{2ab}}{{{a^2} + {b^2}}} \times \frac{{{a^2} + {b^2}}}{{{a^2} - {b^2}}}\)
\(=\frac{2 a b}{a^{2}-b^{2}}\)
\(=\frac{2 a b}{a^{2}-b^{2}}\)
\(= \frac{{2ab}}{{{a^2} - {b^2}}}\) ডানপক্ষ (প্রমাণিত)
(v) যদি \(\frac{\sin \theta}{x}=\frac{\cos \theta}{y}\) হয়, তাহলে দেখাই যে, \(\sin \theta - \cos \theta = \frac{{{x} - {y}}}{{\sqrt {{x^2} + {y^2}} }}\)
দেওয়া আছে, \(\frac{\sin \theta}{x}=\frac{\cos \theta}{y}=k\) (ধরো)
\(\therefore \sin \theta=k x\) \(\ldots(1)\)
এবং \(\cos \theta=k y\) \(\ldots (2)\)
আমরা জানি, \(\sin ^{2} \theta+\cos ^{2} \theta=1\)
বা, \((k x)^{2}+(k y)^{2}=1\)
বা, \(k^{2} x^{2}+k^{2} y^{2}=1\)
বা, \(k^{2}\left(x^{2}+y^{2}\right)=1\)
বা, \(k^{2}=\frac{1}{\left(x^{2}+y^{2}\right)}\)
বা, \(k=\sqrt{\frac{1}{\left(x^{2}+y^{2}\right)}}\)
বা, \(k=\frac{1}{\sqrt{x^{2}+y^{2}}}\)
\(\therefore \sin \theta=k x=\frac{1}{\sqrt{x^{2}+y^{2}}} \times x=\frac{x}{\sqrt{x^{2}+y^{2}}}\) \(\ldots (3)\)
এবং \(\cos \theta=k y=\frac{1}{\sqrt{x^{2}+y^{2}}} \times y=\frac{y}{\sqrt{x^{2}+y^{2}}}\) \(\ldots(4)\)
\(\therefore \sin \theta-\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}-\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{x-y}{\sqrt{x^{2}+y^{2}}}\).
\(\therefore \sin \theta-\cos \theta=\frac{x-y}{\sqrt{x^{2}+y^{2}}}\) (প্রমাণিত)
(vi) যদি \(\left( {1 + 4{x^2}} \right)\cos A = 4x\) হয়, তাহলে দেখাই যে, \(cosec A + \cot A = \frac{{1 + 2x}}{{1 - 2x}}\)
\(\because\left(1+4 x^{2}\right) \cos A=4 x\)
\(\therefore \cos A=\frac{4 x}{1+4 x^{2}}\)
\(\therefore \sin ^{2} A=1-\cos ^{2} A=1-\frac{(4 x)^{2}}{\left(1+4 x^{2}\right)^{2}}\)
\(=1-\frac{16 x^{2}}{\left(1+4 x^{2}\right)^{2}}=\frac{\left(1+4 x^{2}\right)^{2}-4.4 x^{2} \cdot 1}{\left(1+4 x^{2}\right)^{2}}=\frac{\left(1-4 x^{2}\right)^{2}}{\left(1+4 x^{2}\right)^{2}} .\)
\(\therefore \sin A=\sqrt{\frac{\left(1-4 x^{2}\right)^{2}}{\left(1+4 x^{2}\right)^{2}}}\)
\(\therefore \sin A=\frac{1-4 x^{2}}{1+4 x^{2}} \therefore \operatorname{cosec} A=\frac{1+4 x^{2}}{1-4 x^{2}}\)
\(\cot A=\frac{\cos A}{\sin A}=\frac{\frac{4 x}{1+4 x^{2}}}{\frac{1-4 x^{2}}{1+4 x^{2}}}=\frac{4 x}{1-4 x^{2}}\)
\(\therefore \operatorname{cosec} A+\cot A=\frac{1+4 x^{2}}{1-4 x^{2}}+\frac{4 x}{1-4 x^{2}}=\frac{1+4 x^{2}+4 x}{1-4 x^{2}}\)
\(=\frac{(1)^{2}+2 \times 1 \times 2 x+(2 x)^{2}}{(1)^{2}-(2 x)^{2}}\)
\(=\frac{(1+2 x)^{2}}{(1+2 x)(1-2 x)}=\frac{1+2 x}{1-2 x}\)(প্রমাণিত)
7. যদি \(x = a\sin \theta \) এবং \(y = b\tan \theta \) হয় তাহলে প্রমান করি \(\frac{{{a^2}}}{{{x^2}}} - \frac{{{b^2}}}{{{y^2}}} = 1\)
দেওয়া আছে, \(x=a \sin \theta\)
বা, \(\frac{x}{a}=\sin \theta\)
বা, \(\frac{x^{2}}{a^{2}}=\sin ^{2} \theta\) (উভয়দিকে বর্গ করে)
বা, \(\frac{a^{2}}{x^{2}}=\frac{1}{\sin ^{2} \theta}\)
বা, \(\frac{a^{2}}{x^{2}}=\operatorname{cosec}^{2} \theta\) \(\ldots(1)\)
আবার, \(y=b \tan \theta\)
বা, \(\frac{y}{b}=\tan \theta\)
বা, \(\frac{b}{y}=\cot \theta\) (উভয়দিকে বর্গ করে)
বা, \(\cot ^{2} \theta=\frac{b^{2}}{y^{2}}\) \(\ldots(2)\)
এখন, (1) থেকে (2) বিয়ােগ করে পাই,
\(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}\)
বা, \(1=\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}\)
\(\therefore \frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1\) (প্রমাণিত)
8. যদি \(\sin \theta + \sin^2 \theta = 1\) হয়, তাহলে প্রমান করি যে, \(\cos ^{2} \theta+\cos ^{4} \theta=1\)
দেওয়া আছে, \(\sin \theta+\sin ^{2} \theta=1\)
বা, \(\sin \theta=1-\sin ^{2} \theta\)
বা, \(\sin \theta=\cos ^{2} \theta\) \(\left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]\)
বা, \(\sin ^{2} \theta=\cos ^{4} \theta\) [বর্গ করে]
বা, \(1-\cos ^{2} \theta=\cos ^{4} \theta\)
বা, \(1=\cos ^{2} \theta+\cos ^{4} \theta\)
বা, \(\cos ^{2} \theta+\cos ^{4} \theta=1.\)
\(\therefore \cos ^{2} \theta+\cos ^{4} \theta=1\) (প্রমাণিত)

9. অতিসংক্ষিপ্ত উত্তরধর্মী প্ৰশ্ন-(V.S.A)

(A) বহুবিকল্পীয় প্রশ্ন (M.C.Q) :

(i) যদি \(3x = cosec \alpha \) এবং \(\frac{3}{x} = \cot \alpha \) হয়, তাহলে \(3 \left( {{x^2} - \frac{1}{{{x^2}}}} \right)\) -এর মান
\({\rm{ (a) }}\frac{1}{{27}}{\rm{ (b) }}\frac{1}{{81}}{\rm{ (c) }}\frac{1}{3}{\rm{ (d) }}\frac{1}{9}\)
দেওয়া আছে, \(3 x=\operatorname{cosec} \alpha\)
বা, \((3 x)^{2}=\operatorname{cosec}^{2} \alpha\) (উভয়দিকে বর্গ করে)
বা, \(9 x^{2}=\operatorname{cosec}^{2} \alpha\) \(\ldots (1)\)
আবার, \(\frac{3}{x}=\cot \alpha\)
বা, \(\left(\frac{3}{x}\right)^{2}=(\cot \alpha)^{2}\) (উভয়দিকে বর্গ করে)
বা, \(\frac{9}{x^{2}}=\cot ^{2} \alpha\) \(\ldots (2)\)
আমরা জানি, \(\operatorname{cosec}^{2} \alpha-\cot ^{2} \alpha=1\)
বা, \(9 x^{2}-\frac{9}{x^{2}}=1\)
বা, \(9\left(x^{2}-\frac{1}{x^{2}}\right)=1\)
বা, \(x^{2}-\frac{1}{x^{2}}=\frac{1}{9}\)
বা, \(3\left(x^{2}-\frac{1}{x^{2}}\right)=3 \times \frac{1}{9}\) (উভয়দিকে 3 গুন করে)
বা, \(3\left(x^{2}-\frac{1}{x^{2}}\right)=\frac{1}{3}\)
\(\therefore\) (c) উত্তরটি সঠিক।
ত্রিকোণমিতিক অনুপাত এবং ত্রিকোণমিতিক অভেদাবলি কষে দেখি ২৩.৩ | Koshe Dekhi 23.3 Class 10
আজই Install করুন Chatra Mitra Madhyamik Previous Year Question Paper | মাধ্যমিক বিগত 22 বছরের অঙ্ক প্রশ্নের উত্তরপত্র
(ii) যদি \(2x = \sec A\) এবং \(\frac{2}{x} = \tan A\) হয়, তাহলে \( 2 ({x^2} - \frac{1}{{{x^2}}})\) -এর মান
\({\rm{ (a) }}\frac{1}{2}{\rm{ (b) }}\frac{1}{4}{\rm{ (c) }}\frac{1}{8}{\rm{ (d) }}\frac{1}{{16}}\)
\(2x = \sec A, \frac{2}{x} = \tan A \)
উভয় পক্ষকে বর্গ এবং বিয়োগ করিয়া পাই।
\({\sec ^2}A - {\tan ^2}A = {(2x)^2} - {\left( {\frac{2}{x}} \right)^2}\)
বা, \(1 = 4{x^2} - \frac{4}{{{x^2}}}\)
বা, \(4\left( {{x^2} - \frac{1}{{{x^2}}}} \right) = 1\)
বা, \(2 \times 2\left(x^{2}-\frac{1}{x^{2}}\right)=1\)
বা, \(2\left( {{x^2} - \frac{1}{{{x^2}}}} \right) = \frac{1}{2}\)
\((a)\frac{1}{2}\)
(iii) \(\tan \alpha + \cot \alpha = 2\) হলে \(({\tan ^{13}}\alpha + {\cot ^{13}}\alpha) \) -এর মান
(a) 1 (b) 0 (c) 2 (d) কোনোটিই নয়।
দেওয়া আছে, \(\tan \alpha+\cot \alpha=2\)
বা, \(\tan \alpha+\frac{1}{\tan \alpha}=2\)
বা, \(\frac{\tan ^{2} \alpha+1}{\tan \alpha}=2\)
বা, \(\tan ^{2} \alpha+1=2 \tan \alpha\)
বা, \(\tan ^{2} \alpha-2 \tan \alpha+1=0\)
বা, \((\tan \alpha-1)^{2}=0\)
বা, \(\tan \alpha-1=0\)
বা, \(\tan \alpha=1\)
\(\therefore \cos \alpha=\frac{1}{\tan \alpha}=\frac{1}{1}=1\)
\(\therefore \tan ^{13} \alpha+\cot ^{13} \alpha=(1)^{13}+(1)^{13}\)
\(=1+1=2.\)
\(\therefore\) (c) উত্তরটি সঠিক।
(iv) যদি \(\sin \theta - \cos \theta = 0\left( {0 \le \theta \le {{90}^\circ }} \right)\) এবং \(\sec \theta + cose \theta = x\) হয়, তাহলে \(x\) -এর মান
\({\rm{ (1) }}1{\rm{ (b) }}2({\rm{c}})\)\(\sqrt 2 (d)2\sqrt 2 \)
\(\sin \theta - \cos \theta = 0\)
বা, \(\sin \theta = \cos \theta \)
বা, \(\sin \theta = \sin \left( {{{90}^\circ } - \theta } \right)\) \(\left[\because \sin \left(90^{\circ}-\theta\right)=\cos \theta\right]\)
বা, \(\theta = {90^\circ }- \theta \)
বা, \(\theta+\theta=90^{\circ}\)
বা, \(20=90^{\circ}\)
বা, \(\theta=\frac{90^{\circ}}{2}\)
বা, \(\theta = 45\)
প্রদত্ত, \(\sec \theta + cosec \theta = x\)
বা, \(\sec 45^\circ + cosec {45^\circ } = x\) \(\left[\because \theta=45^{\circ}\right]\)
বা, \(\sqrt 2 + \sqrt 2 = x\)
বা, \(x = 2\sqrt 2 \)
\({\rm{ (d) }}2\sqrt 2 \)
(v) \(2\cos 3\theta = 1\) হলে \(\theta\) -এর মান
\({\rm{ (a) }}{10^\circ }{\rm{ (b) }}{15^\circ }{\rm{ (c) }}{20^\circ }{\rm{ (d) }}{30^\circ }\)
\(2 \cos 3 \theta=1\)
\(\Rightarrow \cos 3 \theta=\frac{1}{2}=\cos 60^{\circ}\)
\(\Rightarrow 3\theta=60^{\circ}\)
\(\Rightarrow \theta=20^{\circ}\)

(B) নীচের বিবৃতিগুলি সত্য না মিথ্যা লিখি :

(i) যদি \({0^\circ } \le \alpha \le {90^\circ }\) হয়, তাহলে \(\left( {{{\sec }^2}\alpha + {{\cos }^2}\alpha } \right)\) -এর সর্বনিম্ন মান 2।
সত্য, কারণ,
\(\sec ^{2} \alpha+\cos ^{2} \alpha\)
\(=(\sec \alpha-\cos \alpha)^{2}+2 \sec \alpha \times \cos \alpha\).
\(=(\sec \alpha-\cos \alpha)^{2}+2 \cdot \frac{1}{\cos \alpha} \times \cos \alpha\)
\(=(\sec \alpha-\cos \alpha)^{2}+2\)
এখন, \((\sec \alpha-\cos \alpha)^{2}\)-এর ক্ষুদ্রতম মান হল \(0\).
\(\therefore\left(\sec ^{2} \alpha+\cos ^{2} \alpha\right)\) এর ক্ষুদ্রতম মান \(=0+2=2\)
\(\therefore\) প্রদত্ত বিবৃতিটি সত্য।
(ii) \(\left( {\cos {0 ^\circ }\times\cos {1^\circ } \times \cos {2^\circ } \times \cos {3^\circ } \times \ldots \cos 90} ^{\circ}\right)\) -এর মান 1।
মিথ্যা; কারণ,
\(\cos 0^{\circ} \times \operatorname{cos} 1^{\circ} \times \cos 2^{\circ} \times \cos 3^{\circ} \times \ldots \times \cos 90^{\circ}\)
\(=1 \times \cos 1^{\circ} \times \cos 2^{\circ} \times \cos 3^{\circ}\times \ldots \ldots \times0\)
[\(\because \cos ^{\circ}=1\) এবং \(\cos 9 \theta^{\circ} = \theta\).]
\(=0\).
\(\therefore\) প্রদত্ত বিবৃতিটি মিথ্যা।

(C) শূন্যস্থান পূরণ করি :

(i) \( \left( {\frac{4}{{{{\sec }^2}\theta }} + \frac{1}{{1 + {{\cot }^2}\theta }} + 3{{\sin }^2}\theta } \right)\) -এর মান ________।
4; কারণ
\(\frac{4}{\sec ^{2} \theta}+\frac{1}{1+\cot ^{2} \theta}+3 \sin ^{2} \theta.\)
\(=4 \cos ^{2} \theta+\frac{1}{\operatorname{cosec}^{2} \theta}+3 \sin ^{2} \theta.\)
\(=4 \cos ^{2} \theta+\sin ^{2} \theta+3 \sin ^{2} \theta.\)
\(=4 \cos ^{2} \theta+4 \sin ^{2} \theta.\)
\(=4\left(\cos ^{2} \theta+\sin ^{2} \theta\right).\)
\(=4 \times 1=4.\)
(ii) \(\sin \left( {\theta - {{30}^\circ }} \right) = \frac{1}{2}\) হলে, \(\cos \theta \) -এর মান ________।
সমাধান : \(\sin \left( {\theta - {{30}^\circ }} \right) = \frac{1}{2}\)
বা, \(\sin \left( {\theta - {{30}^\circ }} \right) = \sin {30^\circ }\)
বা, \(\theta-30^{\circ}=30^{\circ}\)
বা, \(0=30^{\circ}+30^{\circ}\)
বা, \(\theta = {60^\circ }\)
\(\therefore \cos \theta\)
=\(\cos {60^\circ } = \frac{1}{2}\)
(iii) \({\cos ^2}\theta - {\sin ^2}\theta = \frac{1}{2}\) হলে \({\cos ^4}\theta - {\sin ^4}\theta \) -এর মান ______।
\(\frac{1}{2}\); কারণ, \(\cos ^{4} \theta-\sin ^{4} \theta\)
\(=\left(\cos ^{2} \theta\right)^{2}-\left(\sin ^{2} \theta\right)^{2}\)
\(=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\)
\(=1 \times\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\)\(\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]\)
\(=\cos ^{2} \theta-\sin ^{2} \theta\)
\(=\frac{1}{2}\left[\because \cos ^{2} \theta-\sin ^{2} 0=\frac{1}{2}\right]\)

10. সংক্ষিপ্ত উত্তরধর্মী প্রশ্ন (S.A) :

(i) যদি \(r\cos \theta = 2\sqrt 3 ,r\sin \theta = 2\) এবং \(0^{\circ} < \theta < 90^{\circ}\) হয়, তাহলে r ও \(\theta\) উভয়ের মান নির্ণয় করি।
\(r \cos \theta=2 \sqrt{3}\)
বা, \((\operatorname{rrcos} \theta)^{2}=(2 \sqrt{3})^{2}\)
বা, \(r^{2} \cos ^{2} \theta=12\) [বর্গ করে] \(\ldots(1)\)
আবার, \(r \sin \theta=2\)
বা, \((r \sin \theta)^{2}=(2)^{2}\) বা, \(r^{2} \sin ^{2} \theta=4\) [বর্গ করে] \(\ldots(2)\)
এখন, (1) ও (2) যােগ করে পাই,
\(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=16\)
বা, \(r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=16\)
বা, \(r^{2} \times \cdot (1)=16\)
বা, \(x^{2}=16\)
বা, \(r=\sqrt{16}=4\)
আবার, \(\frac{r \cos \theta}{r \sin \theta}=\frac{2 \sqrt{3}}{2}\)
বা, \(\cot \theta=\sqrt{3}\)
বা, \(\cot \theta=\cot 30^{\circ}\left(\because 0^{\circ}< \theta < 90^{\circ}\right)\)
\(\Rightarrow \theta=30^{\circ}\)
\(\therefore r=4\), \(\theta=30^{\circ}\)
এবং \(\theta=30^{\circ}\)
(ii) যদি sinA + sinB = 2 হয় যেখানে \({0^\circ } \le A \le {90^\circ }\) এবং \(0^{\circ} \leq \mathrm{B} \leq 90^{\circ}\), তাহলে \((\cos A + \cos B)\)- এর মান নির্ণয় করি।
দেওয়া আছে, \(0^{\circ} \leq \mathrm{A} \leq 90^{\circ}\) এবং \(0^{\circ} \leq \mathrm{B} \leq 90^{\circ}\)
আবার, \(\sin A+\sin B=2.\)
\(\therefore\) স্বাভাবিকভাবেই \(\sin A=1\) এবং \(\sin B=1\). [\(\because\) \(\sin A\) এবং \(\sin B\)-এর বৃহত্তম মান \(= 1\)]
এখন, \(\sin A=1 \Rightarrow \sin A=\sin 90^{\circ}\)
\(\Rightarrow \mathrm{A}=90^{\circ}\)
আবার, \(\sin B=1 \Rightarrow \sin B=\sin 90^{\circ}\)
\(\Rightarrow \mathbf{B}=90^{\circ}\)
\(\therefore \cos A+\cos B=\cos 90^{\circ}+\cos 90^{\circ}\)\(\left[\because A=90^{\circ}, B=90^{\circ}\right]\)
\(=0+0=0\)
\(\therefore(\cos A+\cos B)\)-এর নির্ণেয় মান \(= 0\).
(iii) যদি \({0^\circ } < \theta < {90^\circ }\) হয়, তাহলে \(\left( {9{{\tan }^2}\theta + 4{{\cot }^2}\theta } \right)\) -এর সর্বনিম্ন মান নির্ণয় করি।
\(9{\tan ^2}\theta + 4{\cot ^2}\theta \)
\( = {(3\tan \theta )^2} + {(2\cot \theta )^2}\)
\( = {(3\tan \theta - 2\cot \theta )^2} -2.3\tan \theta \times 2\cot \theta \)
\(=(3 \tan \theta-2 \cot \theta)^{2}-12 \tan \theta \times \frac{1}{\tan \theta}\)
\( = (3\tan \theta - 2\cot \theta )^2 + 12\)
যে-কোনো পূর্ণবর্গ সংখ্যামালার সর্বনিন্ম মান 0 (শূন্য)
সুতরাং \(9{\tan ^2}\theta + 4{\cot ^2}\) এর নূন্যতম মান 12
(iv) \(\left( {{{\sin }^6}\alpha + {{\cos }^6}\alpha + 3{{\sin }^2}\alpha {{\cos }^2}\alpha } \right)\) এর মান নির্ণয় করি।
\(\sin ^{6} \alpha+\cos ^{6} \alpha+3 \sin ^{2} \alpha \cos ^{2} \alpha.\)
\(=\left(\sin ^{2} \alpha\right)^{3}+\left(\cos ^{2} \alpha\right)^{3}+3 \sin ^{2} \alpha \cos ^{2} \alpha .\)
\(=\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{3}-3 \sin ^{2} \alpha \cos ^{2} \alpha\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)+3 \sin ^{2} \alpha \cos ^{2} \alpha.\)
\(=(1)^{3}-3 \sin ^{2} \alpha \cos ^{2} \alpha \times 1+3 \sin ^{2} \alpha \cos ^{2} \alpha.\)
\(=1-3 \sin ^{2} \alpha \cos ^{2} \alpha+3 \sin ^{2} \alpha \cos ^{2} \alpha=1.\)
\(\therefore\) প্রদত্ত রাশির নিয়ে মান \(= 1\).
(v) যদি \({cosec ^2}\theta = 2\cot \theta \) এবং \({0^\circ } < {\theta } < {90^\circ }\) হয়, তাহলে \(\theta\)-এর মান নির্ণয় করি ।
\(\operatorname{cosec}^{2} \theta=2 \cot \theta\)
বা, \(1+\cot ^{2} \theta=2 \cot \theta\)
বা, \(1+\cot ^{2} \theta-2 \cot \theta=0\)
বা, \(1-2 \cot \theta+\cot ^{2} \theta=0\)
বা, \((1-\cot \theta)^{2}=0\)
বা, \(1-\cot \theta=0\)
বা, \(\cot \theta=1=\cot 45^{\circ} \therefore \theta=45^{\circ} .\)
\(\therefore \theta\)-এর মান \(=45^{\circ}\)
ত্রিকোণমিতিক অনুপাত এবং ত্রিকোণমিতিক অভেদাবলি কষে দেখি ২৩.৩ | Koshe Dekhi 23.3 Class 10
আজই Install করুন Chatra Mitra Madhyamik Previous Year Question Paper | মাধ্যমিক বিগত 22 বছরের অঙ্ক প্রশ্নের উত্তরপত্র
এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি করা বা সম্পাদনা করা নিষিদ্ধ। ভারতীয় Copywright আইন 1957 এর ধারা 63 অনুযায়ী, এই ফাইলটির সমস্ত অধিকার 'ছাত্র মিত্র Mathematics' অ্যাপ দ্বারা সংরক্ষিত। ছাত্র মিত্রের অনুমতি ছাড়া, এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি করা বা সম্পাদনা করা আইনত দন্ডনীয় অপরাধ। কেউ ছাত্র মিত্রের অনুমতি ছাড়া, এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি বা সম্পাদনা করলে ছাত্র মিত্র কতৃপক্ষ তার বিরুদ্ধে সকল প্রকার কঠোর আইনি পদক্ষেপ করবে।

Leave a Comment

Your email address will not be published. Required fields are marked *

Share this page using:

Exit mobile version