West Bengal Board Class 8 Math Book Solution || Koshe dekhi 5.3 WBBSE Class 8 || ঘনফল নির্ণয় কষে দেখি 5.3 || WBBSE Class-8 (VIII) Koshe dekhi 5.3 Somadhan || Gonitprava Class 8 Chapter 5 Solution || গণিতপ্রভা অষ্টম শ্রেণি (ক্লাস-৮) সমাধান || অধ্যায় ৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ
Share this page using :
অধ্যায় ৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ || Koshe dekhi 5.3 WBBSE Class 8 || ঘনফল নির্ণয় কষে দেখি 5.3 || WBBSE Class-8 (VIII) Koshe dekhi 5.3 Somadhan || West Bengal Board Class 8 Math Book Solution
কষে দেখি - 5.3
অধ্যায় ৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ || Koshe dekhi 5.3 WBBSE Class 8 || ঘনফল নির্ণয় কষে দেখি 5.3 || WBBSE Class-8 (VIII) Koshe dekhi 5.3 Somadhan || West Bengal Board Class 8 Math Book Solution
1. ফাঁকা ঘরে বুঝে লিখি :
প্রথম বীজগাণিতিক সংখ্যামালা | দ্বিতীয় বীজগাণিতিক সংখ্যামালা | \( \begin{array}{l}a^{3}+b^{3}=(a+b) \times\left(a^{2}-a b+b^{2}\right) \\ a^{3}-b^{3}=(a-b) \times\left(a^{2}+a b+b^{2}\right)\end{array} \) অভেদের সাহায্যে প্রথম ও দ্বিতীয়ের গুণফল |
---|---|---|
(i) \(x+9\) | \(x^{2}-9 x+81\) | \((x+9)\left(x^{2}-9 x+81\right)=\left(x^{3}+9^{3}\right) =x^{3}+729\) |
(ii) \(2 a-1\) | \(\frac{8 a^{3}-1}{2 a-1}=\frac{(2 a-1)\left(4 a^{2}+2 a+1\right)}{(2 a-1)} =4 a^{2}+2 a+1\) | \(8 a^{3}-1\) \(=(2 a)^{3}-(1)\) \(=(2 a-1)\left\{(2 a^{2})+2 a \times 1+(1)^{2}\right\}\) \(=(2 a-1)\left(4 a^{2}+2 a+1\right)\) |
(iii) \(3-5 c\) | \(\frac{27-125 c^{3}}{3-5 c}=\frac{(3)^{3}-(5 c)^{3}}{3-5 c}\) \(=\frac{(3-5 c)\left(9+15 c+25 c^{2}\right)}{(3-5 c)}\) \(=9+15 c+25 c^{2}\) | \(27-125 c^{3}\) |
(iv) \((a+b+c)\) | \((a+b)^{2}-(a+b) c+c^{2}\) | \((a+b+c)\{(a+b)^{2}-(a+b) c+c^{2} \) \(=(a+b)^{3}+(c)^{3}\) |
(v) \(3 x\) | \((2 x-1)^{2}-(2 x-1)(x+1)+(x+1)^{2}\) | \( \begin{aligned} & 3 x\left\{(2 x-1)^{2}-(2 x-1)(x+1)+(x+1)^{2}\right\} \\ = & \{(2 x-1)+(x+1)\}\left\{(2 x-1)^{2}\right. \\ & \left.\quad-(2 x-1)(x+1)+(x+1)^{2}\right\} \\ = & (2 x-1)^{3}+(x+1)^{3}\end{aligned} \) |
(vi) \(\frac{x}{y}+1\) | \(\frac{x^{2}}{y^{2}}-\frac{x}{y}+1\) | \(\left(\frac{x}{y}+1\right)\left(\frac{x^{2}}{y^{2}}-\frac{x}{y}+1\right)\) \( =\left(\frac{x}{y}\right)^{3}+(1)^{3}=\frac{x^{3}}{y^{3}}+1\) |
(vii) \(4 a-5 b\) | \(16 a^{2}+20 a b-25 b^{2}\) | \((4 a-5 b)\left(16 a^{2}+20 a b+25 b^{2}\right)\) \(=(4 a-5 b)\left\{(4 a)^{2}+4 a \times 5 b+(5 b)^{2}\right\}\) \(=(4 a)^{3}-(5 b)^{3}\) \(=64 a^{3}-125 b^{3}\) |
(viii) \( \begin{array}{l}\frac{a^{3} b^{3}-c^{3} d^{3}}{a^{2} b^{2}+a b c d+c^{2} d^{2}} \\ =\frac{(a b)^{3}-(c d)^{3}}{a^{2} b^{2}+a b c d+c^{2} d^{2}} \\ =\frac{(a b-c d)\left(a^{2} b^{2}+a b c d+c^{2} d^{2}\right)}{a^{2} b^{2}+a b c d+c^{2} d^{2}} \\ =a b-c d\end{array} \) | \(a^{2} b^{2}+a b c d+c^{2} d^{2}\) | \( a^{3} b^{3}-c^{3} d^{3} \) |
(ix) \(1-4 y\) | \(\frac{1-64 y^{3}}{1-4 y}=\frac{(1)^{3}-(4 y)^{3}}{1-4 y} =\frac{(1-4 y)\left(1+4 y+16 y^{2}\right)}{(1-4 y)}\) \(=1+4 y+16 y^{2}\) | \(1-64 y^{3}\) |
(x) \((2 p+1)\) | \(=\frac{8(p-3)^{3}+343}{2 p+1}\) \( =\frac{\{2(p-3)\}^{3}+(7)^{3}}{2 p+1} \) \(=\frac{(2 p-6)^{3}+(7)^{3}}{(2 p+1)}\) \(=\frac{(2 p-6+7)\left\{(2 p-6)^{2}-(2 p-6) 7+(7)^{2}\right\}}{(2 p+1)}\) \(=\frac{(2 p+1)\left\{4 p^{2}-24 p+36-14 p+42+49\right\}}{(2 p+1)}\) \(=4 p^{2}-38 p+127 \) | \(8(p-3)^{3}+343\) |
(xi) \((m-p)\) | \((m+n)^{2}+(m+n)(n+p)+(n+p)^{2}\) | \( \begin{array}{l}(m-p)\left\{(m+n)^{2}+(m+n)(n+p)\right. \\ \quad \quad \quad \quad \left.+(n+p)^{2}\right\}\end{array} \) \(=\{(m+n)-(n+p)\}\left\{(m+n)^{2}\right. \left.+(m+n)(n+p)+(n+p)^{2}\right\}\) \(=(m+n)^{3}-(n+p)^{3} \) |
(xii) \( \begin{array}{l}(3 a-2 b)^{2}+(3 a-2 b) \times \\ (2 a-3 b)+(2 a-3 b)^{2}\end{array} \) | \((a+b)\) | \( \begin{array}{r}(a+b)\left\{(3 a-2 b)^{2}+(3 a-2 b)(2 a-3 b)\right. \\ \left.+(2 a-3 b)^{2}\right\} \\ =\{(3 a-2 b)-(2 a-3 b)\}\{(3 a-2 b)^{2} \\ \left.\quad+(3 a-2 b)(2 a-3 b)+(2 a-3 b)^{2}\right\} \\ =(3 a-2 b)^{3}-(2 a-3 b)^{3}\end{array} \) |
2. সরল করি [ সূত্রের সাহায্যে]
(i) \((a+b)(a-b)\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)\)
\( (a+b)(a-b)\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)\)
\(=(a+b)\left(a^{2}-a b+b^{2}\right)(a-b)\left(a^{2}+a b+b^{2}\right) \)
\( =\left(a^{3}+b^{3}\right)\left(a^{3}-b^{3}\right) \)
[ \( \because a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \)
\( a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \)]
\( =\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}\)\( \left[\because(a+b)(a-b)=a^{2}-b^{2}\right] \)
\(=a^{6}-b^{6} \)
\(=(a+b)\left(a^{2}-a b+b^{2}\right)(a-b)\left(a^{2}+a b+b^{2}\right) \)
\( =\left(a^{3}+b^{3}\right)\left(a^{3}-b^{3}\right) \)
[ \( \because a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \)
\( a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \)]
\( =\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}\)\( \left[\because(a+b)(a-b)=a^{2}-b^{2}\right] \)
\(=a^{6}-b^{6} \)
(ii) \((a-2 b)\left(a^{2}+2 a b+4 b^{2}\right)\left(a^{3}+8 b^{3}\right)\)
\( (a-2 b)\left(a^{2}+2 a b+4 b^{2}\right)\left(a^{3}+8 b^{3}\right)\)
\(=\left\{(a)^{3}-(2 b)^{3}\right\}\left(a^{3}+8 b^{3}\right) \)
\( \left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right] \)
\( =\left(a^{3}-8 b^{3}\right)\left(a^{3}+8 b^{3}\right)\)
\(=\left(a^{3}\right)^{2}-\left(8 b^{3}\right)^{2}\) \( \left[\because a^{2}-b^{2}=(a-b)(a+b)\right] \)
\(=a^{6}-64 b^{6} \)
\(=\left\{(a)^{3}-(2 b)^{3}\right\}\left(a^{3}+8 b^{3}\right) \)
\( \left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right] \)
\( =\left(a^{3}-8 b^{3}\right)\left(a^{3}+8 b^{3}\right)\)
\(=\left(a^{3}\right)^{2}-\left(8 b^{3}\right)^{2}\) \( \left[\because a^{2}-b^{2}=(a-b)(a+b)\right] \)
\(=a^{6}-64 b^{6} \)
(iii) \(\left(4 a^{2}-9\right)\left(4 a^{2}-6 a+9\right)\left(4 a^{2}+6 a+9\right)\)
\( \left(4 a^{2}-9\right)\left(4 a^{2}-6 a+9\right)\left(4 a^{2}+6 a+9\right)\)
\(=\left\{(2 a)^{2}-(3)^{2}\right\}\left(4 a^{2}-6 a+9\right)\left(4 a^{2}+6 a+9\right)\)
\(=(2 a-3)(2 a+3)\left(4 a^{2}-6 a+9\right)\left(4 a^{2}+6 a+9\right) \)
\( \left[\because a^{2}-b^{2}=(a+b)(a-b)\right] \)
\( =(2 a+3)\left(4 a^{2}-6 a+9\right)(2 a-3)\left(4 a^{2}+6 a+9\right) \)
\( \left.=\left\{(2 a)^{3}+(3)^{3}\right\}(2 a)^{3}-(3)^{3}\right\} \)
[\( \because(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3} \)
\( (a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3} \)]
\( =\left(8 a^{3}+27\right)\left(8 a^{3}-27\right)\)
\(=\left(8 a^{3}\right)^{2}-(27)^{2} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]\)
\(=64 a^{6}-729 \)
\(=\left\{(2 a)^{2}-(3)^{2}\right\}\left(4 a^{2}-6 a+9\right)\left(4 a^{2}+6 a+9\right)\)
\(=(2 a-3)(2 a+3)\left(4 a^{2}-6 a+9\right)\left(4 a^{2}+6 a+9\right) \)
\( \left[\because a^{2}-b^{2}=(a+b)(a-b)\right] \)
\( =(2 a+3)\left(4 a^{2}-6 a+9\right)(2 a-3)\left(4 a^{2}+6 a+9\right) \)
\( \left.=\left\{(2 a)^{3}+(3)^{3}\right\}(2 a)^{3}-(3)^{3}\right\} \)
[\( \because(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3} \)
\( (a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3} \)]
\( =\left(8 a^{3}+27\right)\left(8 a^{3}-27\right)\)
\(=\left(8 a^{3}\right)^{2}-(27)^{2} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]\)
\(=64 a^{6}-729 \)
(iv) \((x-y)\left(x^{2}+x y+y^{2}\right)+(y-z)\left(y^{2}+y z+z^{2}\right)+(z-x)\left(z^{2}+z x+x^{2}\right)\)
\( (x-y)\left(x^{2}+x y+y^{2}\right)+(y-z)\left(y^{2}+y z+z^{2}\right)\)
\(\quad \quad \quad \quad \quad +(z-x)\left(z^{2}+z x+x^{2}\right) \)
\( =x^{3}-y^{3}+y^{3}-z^{3}+z^{3}-x^{3} \)\( \quad \quad \quad \quad \quad \quad \quad \left[\because(a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3}\right] \)
\(=0\)
\(\quad \quad \quad \quad \quad +(z-x)\left(z^{2}+z x+x^{2}\right) \)
\( =x^{3}-y^{3}+y^{3}-z^{3}+z^{3}-x^{3} \)\( \quad \quad \quad \quad \quad \quad \quad \left[\because(a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3}\right] \)
\(=0\)
(v) \((x+1)\left(x^{2}-x+1\right)+(2 x-1)\left(4 x^{2}+2 x+1\right)-(x-1)\left(x^{2}+x+1\right)\)
\( (x+1)\left(x^{2}-x+1\right)+(2 x-1)\left(4 x^{2}+2 x+1\right) \)
\( \quad \quad \quad \quad \quad \quad \quad -(x-1)\left(x^{2}+x+1\right) \)
\( =x^{3}+1^{3}+(2 x)^{3}-(1)^{3}-(x)^{3}+(1)^{3} \)\( \quad \quad \quad \quad \quad \quad \quad \quad \quad \left[\because(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3}\right] \)
\( =x^{3}+1+8 x^{3}-1-x^{3}+1\)
\(=8 x^{3}+1 \)
\( \quad \quad \quad \quad \quad \quad \quad -(x-1)\left(x^{2}+x+1\right) \)
\( =x^{3}+1^{3}+(2 x)^{3}-(1)^{3}-(x)^{3}+(1)^{3} \)\( \quad \quad \quad \quad \quad \quad \quad \quad \quad \left[\because(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3}\right] \)
\( =x^{3}+1+8 x^{3}-1-x^{3}+1\)
\(=8 x^{3}+1 \)
অধ্যায় ৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ || Koshe dekhi 5.3 WBBSE Class 8 || ঘনফল নির্ণয় কষে দেখি 5.3 || WBBSE Class-8 (VIII) Koshe dekhi 5.3 Somadhan || West Bengal Board Class 8 Math Book Solution
3. \(x+\frac{1}{x}=-1\) হলে \(\left(x^{3}-1\right)\) -এর মান কী হবে হিসাব করে লিখি,
\(x+\frac{1}{x}=-1\)
বা, \(\left(x+\frac{1}{x}\right) x=-1(x)\)
বা, \(x^{2}+1=-x\)
বা, \(x^{2}+x+1=0\) [পক্ষান্তরে পাই]
\(x^{3}-1\)
= \((x-1) \times\left(x^{2}+x+1\right)\) [ সূত্রের সাহায্যে ]
= \((x-1) \times 0=0\)
বা, \(\left(x+\frac{1}{x}\right) x=-1(x)\)
বা, \(x^{2}+1=-x\)
বা, \(x^{2}+x+1=0\) [পক্ষান্তরে পাই]
\(x^{3}-1\)
= \((x-1) \times\left(x^{2}+x+1\right)\) [ সূত্রের সাহায্যে ]
= \((x-1) \times 0=0\)
4. \(a+\frac{9}{a}=3\) হলে \(\left(a^{3}+27\right)\)-এর মান কী হবে হিসাব করে লিখি।
প্রদত্ত, \( a+\frac{9}{a}=3 \)
বা, \( \frac{a^{2}+9}{a}=3 \)
বা, \( a^{2}+9=3 a \)
\( \therefore a^{2}-3 a+9=0 \)
প্রদত্ত রাশিমালা, \( a^{3}+27 \)
\( =(a)^{3}+(3)^{3}=(a+3)\left\{a^{2}-3 \cdot a+(3)^{2}\right\} \)\( \left[\because a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right] \)
\( =(a+3)\left(a^{2}-3 a+9\right)\)
\(=(a+3) \times 0\) \( \quad \left[\because a^{2}-3 a+9=0\right] \)
\(=0 \)
\( \therefore a^{3}+27=0 \)
বা, \( \frac{a^{2}+9}{a}=3 \)
বা, \( a^{2}+9=3 a \)
\( \therefore a^{2}-3 a+9=0 \)
প্রদত্ত রাশিমালা, \( a^{3}+27 \)
\( =(a)^{3}+(3)^{3}=(a+3)\left\{a^{2}-3 \cdot a+(3)^{2}\right\} \)\( \left[\because a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right] \)
\( =(a+3)\left(a^{2}-3 a+9\right)\)
\(=(a+3) \times 0\) \( \quad \left[\because a^{2}-3 a+9=0\right] \)
\(=0 \)
\( \therefore a^{3}+27=0 \)
5. \(\frac{a}{b}+\frac{b}{a}=1\) হলে \(\left(a^{3}+b^{3}\right)\)-এর মান কী হবে হিসাব করে লিখি।
\( \frac{a}{b}+\frac{b}{a}=1 \quad \)
বা, \( \frac{a^{2}+b^{2}}{a b}=1 \)
বা, \( a^{2}+b^{2}=a b \)
বা, \( a^{2}-a b+b^{2}=0 \)
\(\therefore\) প্রদত্ত রাশিমালা :
\( a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \)
\( =(a+b) \times 0 \) \( \quad \left[\because a^{2}-a b+b^{2}=0\right] \)
\(= 0\)
\( \therefore a^{3}+b^{3}=0 \)
বা, \( \frac{a^{2}+b^{2}}{a b}=1 \)
বা, \( a^{2}+b^{2}=a b \)
বা, \( a^{2}-a b+b^{2}=0 \)
\(\therefore\) প্রদত্ত রাশিমালা :
\( a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \)
\( =(a+b) \times 0 \) \( \quad \left[\because a^{2}-a b+b^{2}=0\right] \)
\(= 0\)
\( \therefore a^{3}+b^{3}=0 \)
6. নীচের বীজগাণিতিক সংখ্যামালাগুলিকে উৎপাদকে বিশ্লেষণ করি।
(i) \(1000 a^{3}+27 b^{6}\)
\(1000 a^{3}+27 b^{6}\)
\( =(10 a)^{3}+\left(3 b^{2}\right)^{3}\)
\(=\left(10 a+3 b^{2}\right)\left\{(10 a)^{2}-10 a \cdot 3 b^{2}+\left(3 b^{2}\right)^{2}\right\}\)
\(=\left(10 a+3 b^{2}\right)\left(100 a^{2}-30 a b^{2}+9 b^{4}\right) \)
\( =(10 a)^{3}+\left(3 b^{2}\right)^{3}\)
\(=\left(10 a+3 b^{2}\right)\left\{(10 a)^{2}-10 a \cdot 3 b^{2}+\left(3 b^{2}\right)^{2}\right\}\)
\(=\left(10 a+3 b^{2}\right)\left(100 a^{2}-30 a b^{2}+9 b^{4}\right) \)
(ii) \(1-216 z^{3}\)
\(1-216 z^{3}\)
\(=(1)^{3}-(6 z)^{3}\)
\( =(1-6 z)\left\{1^{2}+1.6 z+(6 z)^{2}\right\}\)
\(=(1-6 z)\left(1+6 z+36 z^{2}\right) \)
\(=(1)^{3}-(6 z)^{3}\)
\( =(1-6 z)\left\{1^{2}+1.6 z+(6 z)^{2}\right\}\)
\(=(1-6 z)\left(1+6 z+36 z^{2}\right) \)
(iii) \(m^{4}-m\)
\(m^{4}-m\)
\( =m\left(m^{3}-1\right) \)
\( =m\left\{(m)^{3}-(1)^{3}\right\}\)
\(=m(m-1)\left(m^{2}+m .1+1^{2}\right)\)
\(=m(m-1)\left(m^{2}+m+1\right) \)
\( =m\left(m^{3}-1\right) \)
\( =m\left\{(m)^{3}-(1)^{3}\right\}\)
\(=m(m-1)\left(m^{2}+m .1+1^{2}\right)\)
\(=m(m-1)\left(m^{2}+m+1\right) \)
(iv) \(192 a^{3}+3\)
\(192 a^{3}+3\)
\( =3\left(64 a^{3}+1\right) \)
\(=3\left\{(4 a)^{3}+(1)^{3}\right\}\)
\(=3(4 a+1)\left\{(4 a)^{2}-4 a .1+(1)^{2}\right\}\)
\(=3(4 a+1)\left(16 a^{2}-4 a+1\right) \)
\( =3\left(64 a^{3}+1\right) \)
\(=3\left\{(4 a)^{3}+(1)^{3}\right\}\)
\(=3(4 a+1)\left\{(4 a)^{2}-4 a .1+(1)^{2}\right\}\)
\(=3(4 a+1)\left(16 a^{2}-4 a+1\right) \)
(v) \(16 a^{4} x^{3}+54 a y^{3}\)
\(16 a^{4} x^{3}+54 a y^{3}\)
\( =2 a\left(8 a^{3} x^{3}+27 y^{3}\right)\)
\(=2 a\left\{(2 a x)^{3}+(3 y)^{3}\right\}\)
\(=2 a(2 a x+3 y)\left\{(2 a x)^{2}-2 a x \cdot 3 y+(3 y)^{2}\right\}\)
\(=2 a(2 a x+3 y)\left(4 a^{2} x^{2}-6 a x y+9 y^{2}\right) \)
\( =2 a\left(8 a^{3} x^{3}+27 y^{3}\right)\)
\(=2 a\left\{(2 a x)^{3}+(3 y)^{3}\right\}\)
\(=2 a(2 a x+3 y)\left\{(2 a x)^{2}-2 a x \cdot 3 y+(3 y)^{2}\right\}\)
\(=2 a(2 a x+3 y)\left(4 a^{2} x^{2}-6 a x y+9 y^{2}\right) \)
(vi) \(729 a^{3} b^{3} c^{3}-125\)
\(729 a^{3} b^{3} c^{3}-125\)
\( =(9 a b c)^{3}-(5)^{3}\)
\(=(9 a b c-5)\left\{(9 a b c)^{2}+9 a b c .5+5^{2}\right\}\)
\(=(9 a b c-5)\left(81 a^{2} b^{2} c^{2}+45 a b c+25\right) \)
\( =(9 a b c)^{3}-(5)^{3}\)
\(=(9 a b c-5)\left\{(9 a b c)^{2}+9 a b c .5+5^{2}\right\}\)
\(=(9 a b c-5)\left(81 a^{2} b^{2} c^{2}+45 a b c+25\right) \)
(vii) \(\frac{27}{a^{3}}-\frac{1}{27 b^{3}}\)
\( \frac{27}{a^{3}}-\frac{1}{27 b^{3}}\)
\(=\left(\frac{3}{a}\right)^{3}-\left(\frac{1}{3 b}\right)^{3} \)
\(=\left(\frac{3}{a}-\frac{1}{3 b}\right)\left\{\left(\frac{3}{a}\right)^{2}+\frac{3}{a} \times \frac{1}{3 b}+\left(\frac{1}{3 b}\right)^{2}\right\}\)
\(=\left(\frac{3}{a}-\frac{1}{3 b}\right)\left\{\frac{9}{a^{2}}+\frac{1}{a b}+\frac{1}{9 b^{2}}\right\} \)
\(=\left(\frac{3}{a}\right)^{3}-\left(\frac{1}{3 b}\right)^{3} \)
\(=\left(\frac{3}{a}-\frac{1}{3 b}\right)\left\{\left(\frac{3}{a}\right)^{2}+\frac{3}{a} \times \frac{1}{3 b}+\left(\frac{1}{3 b}\right)^{2}\right\}\)
\(=\left(\frac{3}{a}-\frac{1}{3 b}\right)\left\{\frac{9}{a^{2}}+\frac{1}{a b}+\frac{1}{9 b^{2}}\right\} \)
(viii) \(\frac{x^{3}}{64}-\frac{64}{x^{3}}\)
\(\frac{x^{3}}{64}-\frac{64}{x^{3}}\)
\( =\left(\frac{x}{4}\right)^{3}-\left(\frac{4}{x}\right)^{3}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}\right)^{2}+\frac{x}{4} \cdot \frac{4}{x}+\left(\frac{4}{x}\right)^{2}\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}\right)^{2}+\left(\frac{4}{x}\right)^{2}+1\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}+\frac{4}{x}\right)^{2}-2 \cdot \frac{x}{4} \cdot \frac{4}{x}+1\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}+\frac{4}{x}\right)^{2}-1\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}+\frac{4}{x}\right)^{2}-(1)^{2}\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left(\frac{x}{4}+\frac{4}{x}+1\right)\left(\frac{x}{4}+\frac{4}{x}-1\right) \)
\( =\left(\frac{x}{4}\right)^{3}-\left(\frac{4}{x}\right)^{3}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}\right)^{2}+\frac{x}{4} \cdot \frac{4}{x}+\left(\frac{4}{x}\right)^{2}\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}\right)^{2}+\left(\frac{4}{x}\right)^{2}+1\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}+\frac{4}{x}\right)^{2}-2 \cdot \frac{x}{4} \cdot \frac{4}{x}+1\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}+\frac{4}{x}\right)^{2}-1\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left\{\left(\frac{x}{4}+\frac{4}{x}\right)^{2}-(1)^{2}\right\}\)
\(=\left(\frac{x}{4}-\frac{4}{x}\right)\left(\frac{x}{4}+\frac{4}{x}+1\right)\left(\frac{x}{4}+\frac{4}{x}-1\right) \)
(ix) \(x^{3}+3 x^{2} y+3 x y^{2}+2 y^{3}\)
\( x^{3}+3 x^{2} y+3 x y^{2}+2 y^{3}\)
\(=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}+y^{3}\)
\(=(x+y)^{3}+y^{3}\)
\(=\{(x+y)+y\}\left\{(x+y)^{2}-(x+y) y+(y)^{2}\right\}\)
\(=(x+2 y)\left(x^{2}+2 x y+y^{2}-x y-y^{2}+y^{2}\right)\)
\(=(x+2 y)\left(x^{2}+x y+y^{2}\right) \)
\(=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}+y^{3}\)
\(=(x+y)^{3}+y^{3}\)
\(=\{(x+y)+y\}\left\{(x+y)^{2}-(x+y) y+(y)^{2}\right\}\)
\(=(x+2 y)\left(x^{2}+2 x y+y^{2}-x y-y^{2}+y^{2}\right)\)
\(=(x+2 y)\left(x^{2}+x y+y^{2}\right) \)
(x) \(1+9 x+27 x^{2}+28 x^{3}\)
\( 1+9 x+27 x^{2}+28 x^{3}\)
\(=1+9 x+27 x^{2}+27 x^{3}+x^{3}\)
\(=1+3 \cdot 1^{2} \cdot 3 x+3 \cdot 1(3 x)^{2}+(3 x)^{3}+x^{3}\)
\(=(1+3 x)^{3}+(x)^{3}\)
\(=\{(1+3 x)+x\}\left\{(1+3 x)^{2}-(1+3 x) \cdot x+(x)^{2}\right\}\)
\(=(1+4 x)\left(1+6 x+9 x^{2}-x-3 x^{2}+x^{2}\right)\)
\(=(1+4 x)\left(1+5 x+7 x^{2}\right) \)
\(=1+9 x+27 x^{2}+27 x^{3}+x^{3}\)
\(=1+3 \cdot 1^{2} \cdot 3 x+3 \cdot 1(3 x)^{2}+(3 x)^{3}+x^{3}\)
\(=(1+3 x)^{3}+(x)^{3}\)
\(=\{(1+3 x)+x\}\left\{(1+3 x)^{2}-(1+3 x) \cdot x+(x)^{2}\right\}\)
\(=(1+4 x)\left(1+6 x+9 x^{2}-x-3 x^{2}+x^{2}\right)\)
\(=(1+4 x)\left(1+5 x+7 x^{2}\right) \)
(xi) \(x^{3}-9 y^{3}-3 x y(x-y)\)
\( x^{3}-9 y^{3}-3 x y(x-y)\)
\(=x^{3}-9 y^{3}-3 x^{2} y+3 x y^{2}\)
\(=x^{3}-y^{3}-8 y^{3}-3 x^{2} y+3 x y^{2}\)
\(=\left(x^{3}-3 x^{2} y+3 x y^{2}-y^{3}\right)-8 y^{3}\)
\(=(x-y)^{3}-(2 y)^{3}\)
\( =\{(x-y)-2 y\}\left\{(x-y)^{2}+(x-y) \cdot 2 y+(2 y)^{2}\right\} \)
\(=(x-3 y)\left(x^{2}-2 x y+y^{2}+2 x y-2 y^{2}+4 y^{2}\right)\)
\(=(x-3 y)\left(x^{2}+3 y^{2}\right) \)
\(=x^{3}-9 y^{3}-3 x^{2} y+3 x y^{2}\)
\(=x^{3}-y^{3}-8 y^{3}-3 x^{2} y+3 x y^{2}\)
\(=\left(x^{3}-3 x^{2} y+3 x y^{2}-y^{3}\right)-8 y^{3}\)
\(=(x-y)^{3}-(2 y)^{3}\)
\( =\{(x-y)-2 y\}\left\{(x-y)^{2}+(x-y) \cdot 2 y+(2 y)^{2}\right\} \)
\(=(x-3 y)\left(x^{2}-2 x y+y^{2}+2 x y-2 y^{2}+4 y^{2}\right)\)
\(=(x-3 y)\left(x^{2}+3 y^{2}\right) \)
অধ্যায় ৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ || Koshe dekhi 5.3 WBBSE Class 8 || ঘনফল নির্ণয় কষে দেখি 5.3 || WBBSE Class-8 (VIII) Koshe dekhi 5.3 Somadhan || West Bengal Board Class 8 Math Book Solution
(xii) \(8-a^{3}+3 a^{2} b-3 a b^{2}+b^{3}\)
\( 8-a^{3}+3 a^{2} b-3 a b^{2}+b^{3}\)
\(=8-\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)=(2)^{3}-(a-b)^{3}\)
\(=(2-a+b)\left\{(2)^{2}+2(a-b)+(a-b)^{2}\right\}\)
\(=(2-a+b)\left(4+2 a-2 b+a^{2}-2 a b+b^{2}\right)\)
\(=(2-a+b)\left(4+2 a-2 b-2 a b+a^{2}+b^{2}\right) \)
\(=8-\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)=(2)^{3}-(a-b)^{3}\)
\(=(2-a+b)\left\{(2)^{2}+2(a-b)+(a-b)^{2}\right\}\)
\(=(2-a+b)\left(4+2 a-2 b+a^{2}-2 a b+b^{2}\right)\)
\(=(2-a+b)\left(4+2 a-2 b-2 a b+a^{2}+b^{2}\right) \)
(xiii) \(x^{6}+3 x^{4} b^{2}+3 x^{2} b^{4}+b^{6}+a^{3} b^{3}\)
\( x^{6}+3 x^{4} b^{2}+3 x^{2} b^{4}+b^{6}+a^{3} b^{3}\)
\(=\left(x^{2}\right)^{3}+3 \cdot\left(x^{2}\right)^{2} \cdot b^{2}+3 x^{2} \cdot\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}+(a b)^{3}\)
\(=\left(x^{2}+b^{2}\right)^{3}+(a b)^{3}\)
\(=\left(x^{2}+b^{2}+a b\right)\left\{\left(x^{2}+b^{2}\right)^{2}-\left(x^{2}+b^{2}\right) a b+(a b)^{2}\right\}\)
\(=\left(x^{2}+b^{2}+a b\right) \)
\( \quad \quad \quad \quad \left\{x^{4}+2 x^{2} b^{2}+b^{4}-a b\left(x^{2}+b^{2}\right)+a^{2} b^{2}\right\} \)
\(=\left(x^{2}\right)^{3}+3 \cdot\left(x^{2}\right)^{2} \cdot b^{2}+3 x^{2} \cdot\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}+(a b)^{3}\)
\(=\left(x^{2}+b^{2}\right)^{3}+(a b)^{3}\)
\(=\left(x^{2}+b^{2}+a b\right)\left\{\left(x^{2}+b^{2}\right)^{2}-\left(x^{2}+b^{2}\right) a b+(a b)^{2}\right\}\)
\(=\left(x^{2}+b^{2}+a b\right) \)
\( \quad \quad \quad \quad \left\{x^{4}+2 x^{2} b^{2}+b^{4}-a b\left(x^{2}+b^{2}\right)+a^{2} b^{2}\right\} \)
(xiv) \(x^{6}+27\)
\( x^{6}+27\)
\(=\left(x^{2}\right)^{3}+(3)^{3}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}\right)^{2}-x^{2} \cdot 3+(3)^{2}\right\}\)
\(=\left(x^{2}+3\right)\left(x^{4}-3 x^{2}+9\right)\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}\right)^{2}+(3)^{2}-3 x^{2}\right\}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}+3\right)^{2}-2 \cdot x^{2} \cdot 3-3 x^{2}\right\}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}+3\right)^{2}-9 x^{2}\right\}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}+3\right)^{2}-(3 x)^{2}\right\}\)
\(=\left(x^{2}+3\right)\left(x^{2}+3+3 x\right)\left(x^{2}+3-3 x\right) \)
\(=\left(x^{2}\right)^{3}+(3)^{3}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}\right)^{2}-x^{2} \cdot 3+(3)^{2}\right\}\)
\(=\left(x^{2}+3\right)\left(x^{4}-3 x^{2}+9\right)\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}\right)^{2}+(3)^{2}-3 x^{2}\right\}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}+3\right)^{2}-2 \cdot x^{2} \cdot 3-3 x^{2}\right\}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}+3\right)^{2}-9 x^{2}\right\}\)
\(=\left(x^{2}+3\right)\left\{\left(x^{2}+3\right)^{2}-(3 x)^{2}\right\}\)
\(=\left(x^{2}+3\right)\left(x^{2}+3+3 x\right)\left(x^{2}+3-3 x\right) \)
(xv) \(x^{6}-y^{6}\)
\( x^{6}-y^{6}=\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2} \)
\( =\left(x^{3}+y^{3}\right)\left(x^{3}-y^{3}\right)\)
\(=(x+y)\left(x^{2}-x y+y^{2}\right)(x-y)\left(x^{2}+x y+y^{2}\right) \)
\( =\left(x^{3}+y^{3}\right)\left(x^{3}-y^{3}\right)\)
\(=(x+y)\left(x^{2}-x y+y^{2}\right)(x-y)\left(x^{2}+x y+y^{2}\right) \)
(xvi) \(x^{12}-y^{12}\)
\( x^{12}-y^{12}\)
\(=\left(x^{6}\right)^{2}-\left(y^{6}\right)^{2} \)
\( =\left(x^{6}+y^{6}\right)\left(x^{6}-y^{6}\right)\)
\(=\left\{\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}\right\}\left\{\left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}\right\}\)
\(=\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right)\left\{\left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}\right\}\)
\(=(x-y)\left(x^{2}+x y+y^{2}\right)(x+y)\left(x^{2}-x y+y^{2}\right)\)
\(\quad \quad \left(x^{2}+y^{2}\right)\left\{\left(x^{2}\right)^{2}-x^{2} y^{2}+\left(y^{2}\right)^{2}\right\} \)
\( =(x-y)\left(x^{2}+x y+y^{2}\right)(x+y)\left(x^{2}-x y+y^{2}\right) \)
\(\quad \quad \quad \left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \)
\(=\left(x^{6}\right)^{2}-\left(y^{6}\right)^{2} \)
\( =\left(x^{6}+y^{6}\right)\left(x^{6}-y^{6}\right)\)
\(=\left\{\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}\right\}\left\{\left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}\right\}\)
\(=\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right)\left\{\left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}\right\}\)
\(=(x-y)\left(x^{2}+x y+y^{2}\right)(x+y)\left(x^{2}-x y+y^{2}\right)\)
\(\quad \quad \left(x^{2}+y^{2}\right)\left\{\left(x^{2}\right)^{2}-x^{2} y^{2}+\left(y^{2}\right)^{2}\right\} \)
\( =(x-y)\left(x^{2}+x y+y^{2}\right)(x+y)\left(x^{2}-x y+y^{2}\right) \)
\(\quad \quad \quad \left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \)
(xvii) \(m^{3}-n^{3}-m\left(m^{2}-n^{2}\right)+n(m-n)^{2}\)
\( m^{3}-n^{3}-m\left(m^{2}-n^{2}\right)+n(m-n)^{2}\)
\(=(m-n)\left(m^{2}+m n+n^{2}\right)-m(m+n)(m-n)+n(m-n)(m-n) \)
\( =(m-n)\left\{m^{2}+m n+n^{2}-m(m+n)+n(m-n)\right\}\)
\(=(m-n)\left\{m^{2}+m n+n^{2}-m^{2}-m n+m n-n^{2}\right\}\)
\(=(m-n) m n\)
\(=m n(m-n) \)
\(=(m-n)\left(m^{2}+m n+n^{2}\right)-m(m+n)(m-n)+n(m-n)(m-n) \)
\( =(m-n)\left\{m^{2}+m n+n^{2}-m(m+n)+n(m-n)\right\}\)
\(=(m-n)\left\{m^{2}+m n+n^{2}-m^{2}-m n+m n-n^{2}\right\}\)
\(=(m-n) m n\)
\(=m n(m-n) \)
অধ্যায় ৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ || Koshe dekhi 5.3 WBBSE Class 8 || ঘনফল নির্ণয় কষে দেখি 5.3 || WBBSE Class-8 (VIII) Koshe dekhi 5.3 Somadhan || West Bengal Board Class 8 Math Book Solution
এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি করা বা সম্পাদনা করা নিষিদ্ধ। ভারতীয় Copywright আইন 1957 এর ধারা 63 অনুযায়ী, এই ফাইলটির সমস্ত অধিকার 'ছাত্র মিত্র Mathematics' অ্যাপ দ্বারা সংরক্ষিত। ছাত্র মিত্রের অনুমতি ছাড়া, এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি করা বা সম্পাদনা করা আইনত দন্ডনীয় অপরাধ। কেউ ছাত্র মিত্রের অনুমতি ছাড়া, এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি বা সম্পাদনা করলে ছাত্র মিত্র কতৃপক্ষ তার বিরুদ্ধে সকল প্রকার কঠোর আইনি পদক্ষেপ করবে।
West Bengal Board of Secondary Education Official Site
Class 8 : গণিত প্রভা (অষ্টম শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali.
Class 7 : গণিত প্রভা (সপ্তম শ্রেণি) বইয়ের সমস্ত সমাধান
www.wbresults.nic.in Official
Class 10 : মাধ্যমিক গণিত প্রকাশ (দশম শ্রেণি) বইয়ের সমস্ত সমাধান Class 10 Maths Solution WBBSE Bengali
Class 6 : গণিত প্রভা (ষষ্ঠ শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali
Class 9 : গণিত প্রকাশ (নবম শ্রেণি) বইয়ের সমাধান Maths Solution WBBSE Bengali
আজই Install করুন Chatra Mitra
Class 8 : গণিত প্রভা (অষ্টম শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali.
Class 7 : গণিত প্রভা (সপ্তম শ্রেণি) বইয়ের সমস্ত সমাধান
www.wbresults.nic.in Official
Class 10 : মাধ্যমিক গণিত প্রকাশ (দশম শ্রেণি) বইয়ের সমস্ত সমাধান Class 10 Maths Solution WBBSE Bengali
Class 6 : গণিত প্রভা (ষষ্ঠ শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali
Class 9 : গণিত প্রকাশ (নবম শ্রেণি) বইয়ের সমাধান Maths Solution WBBSE Bengali
আজই Install করুন Chatra Mitra