WBBSE Class-8 (VIII) Koshe dekhi 15 Somadhan || Koshe dekhi 15 WBBSE Class 8 || বীজগাণিতিক সংখ্যামালার সরলীকরণ কষে দেখি 15 || WBBSE Class-8 (VIII) Koshe dekhi 15 Somadhan || Gonitprava Class 8 Chapter 15 Solution || গণিতপ্রভা অষ্টম শ্রেণি (ক্লাস-৮) সমাধান || West Bengal Board Class 8 Math Book Solution || অধ্যায় ১৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ
Share this page using :
Koshe dekhi 15 WBBSE Class 8 || বীজগাণিতিক সংখ্যামালার সরলীকরণ কষে দেখি 15 || WBBSE Class-8 (VIII) Koshe dekhi 15 Somadhan || West Bengal Board Class 8 Book Math Solution || অধ্যায় ১৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ
কষে দেখি - 15
1. নীচের সম্পর্কগুলি দেখি ও কোনটি সত্য ও কোনটি মিথ্যা লিখি।
(i) \(\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}\)
ডানপক্ষ \( =\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}= \) বামপক্ষ
\(\therefore\) সম্পর্কটি সত্য।
\(\therefore\) সম্পর্কটি সত্য।
Koshe dekhi 15 WBBSE Class 8 || বীজগাণিতিক সংখ্যামালার সরলীকরণ কষে দেখি 15 || WBBSE Class-8 (VIII) Koshe dekhi 15 Somadhan || West Bengal Board Class 8 Book Math Solution || অধ্যায় ১৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ
(ii) \(\frac{a}{x+y}=\frac{a}{x}+\frac{a}{y}\)
ডানপক্ষ \( =\frac{a}{x}+\frac{a}{y}=a\left(\frac{1}{x}+\frac{1}{y}\right) \neq
\frac{a}{x+y}= \) বামপক্ষ
\(\therefore\) বামপক্ষ \( \neq \) ডানপক্ষ
\(\therefore\) সম্পর্কটি মিথ্যা।
\(\therefore\) বামপক্ষ \( \neq \) ডানপক্ষ
\(\therefore\) সম্পর্কটি মিথ্যা।
(iii) \(\frac{x-y}{a-b}=\frac{y-x}{b-a}\)
বামপক্ষ \( =\frac{x-y}{a-b}=\frac{-(y-x)}{-(b-a)}=\frac{y-x}{b-a}= \) ডানপক্ষ
\(\therefore\) সম্পর্কটি সত্য।
\(\therefore\) সম্পর্কটি সত্য।
(iv)\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y}\)
বামপক্ষ \( =\frac{1}{x}+\frac{1}{y}=\frac{y+x}{x y} \neq \frac{1}{x+y}= \)
ডানপক্ষ
\(\therefore\) বামপক্ষ \( \neq \) ডানপক্ষ
\(\therefore\) সম্পর্কটি মিথ্যা।
\(\therefore\) বামপক্ষ \( \neq \) ডানপক্ষ
\(\therefore\) সম্পর্কটি মিথ্যা।
2. নীচের বীজগাণিতিক ভগ্নাংশগুলি লঘিষ্ঠ আকারে প্রকাশ করি।
(i) \(\frac{63 a^{3} b^{4}}{77 b^{5}}\)
\( \frac{63 a^{3} b^{4}}{77 b^{5}}=\frac{9 a^{3}}{11 b}\quad \left[\because b^{4}
\div b^{5}=b^{4-5}=b^{-1}=\frac{1}{b}\right] \)
(ii) \(\frac{18 a^{4} b^{5} c^{2}}{21 a^{7} b^{2}}\)
\( \frac{18 a^{4} b^{5} c^{2}}{21 a^{7} b^{2}}=\frac{6 b^{3} c^{2}}{7 a^{3}}\quad
\left[\because a^{4} \div a^{7}=a^{-3}=\frac{1}{a^{3}} ; b^{5} \div b^{2}=b^{3}\right] \)
(iii) \(\frac{x^{2}-3 x+2}{x^{2}-1}\)
\( \frac{x^{2}-3 x+2}{x^{2}-1}=\frac{x^{2}-2
x-x+2}{(x+1)(x-1)}=\frac{x(x-2)-1(x-2)}{(x+1)(x-1)} \)
\( =\frac{(x-1)(x-2)}{(x-1)(x+1)}=\frac{x-2}{x+1} \)
\( =\frac{(x-1)(x-2)}{(x-1)(x+1)}=\frac{x-2}{x+1} \)
(iv) \(\frac{a+1}{a-2} \times \frac{a^{2}-a-2}{a^{2}+a}\)
\( \frac{a+1}{a-2} \times \frac{a^{2}-a-2}{a^{2}+a}=\frac{a+1}{a-2} \times
\frac{a^{2}-2 a+a-2}{a(a+1)} \)
\( =\frac{a+1}{a-2} \times \frac{a(a-2)+1(a-2)}{a(a+1)}\)
\(=\frac{a+1}{(a-2)} \times \frac{(a-2)(a+1)}{a(a+1)}=\frac{a+1}{a} \)
\( =\frac{a+1}{a-2} \times \frac{a(a-2)+1(a-2)}{a(a+1)}\)
\(=\frac{a+1}{(a-2)} \times \frac{(a-2)(a+1)}{a(a+1)}=\frac{a+1}{a} \)
(v) \(\frac{p^{3}+q^{3}}{p^{2}-q^{2}} \div \frac{p+q}{p-q}\)
\( \frac{p^{3}+q^{3}}{p^{2}-q^{2}} \div
\frac{p+q}{p-q}=\frac{p^{3}+q^{3}}{p^{2}-q^{2}} \times \frac{p-q}{p+q} \)
\( =\frac{(p+q)\left(p^{2}-p q+q^{2}\right)}{(p+q)(p-q)} \times \frac{(p-q)}{(p+q)}\)
\(=\frac{p^{2}-p q+q^{2}}{p+q} \)
\( =\frac{(p+q)\left(p^{2}-p q+q^{2}\right)}{(p+q)(p-q)} \times \frac{(p-q)}{(p+q)}\)
\(=\frac{p^{2}-p q+q^{2}}{p+q} \)
(vi) \(\frac{x^{2}-x-6}{x^{2}+4 x-5} \times \frac{x^{2}+6 x+5}{x^{2}-4 x+3}\)
\( \frac{x^{2}-x-6}{x^{2}+4 x-5} \times \frac{x^{2}+6 x+5}{x^{2}-4 x+3} \)
\( =\frac{x^{2}-3 x+2 x-6}{x^{2}+5 x-x-5} \times \frac{x^{2}+5 x+x+5}{x^{2}-3 x-x+3}\)
\(=\frac{x(x-3)+2(x-3)}{x(x+5)-1(x+5)} \times \frac{x(x+5)+1(x+5)}{x(x-3)-1(x-3)}\)
\(=\frac{(x-3)(x+2)}{(x+5)(x-1)} \times \frac{(x+5)(x+1)}{(x-3)(x-1)}\)
\(=\frac{(x+2)(x+1)}{(x-1)^{2}} \)
\( =\frac{x^{2}-3 x+2 x-6}{x^{2}+5 x-x-5} \times \frac{x^{2}+5 x+x+5}{x^{2}-3 x-x+3}\)
\(=\frac{x(x-3)+2(x-3)}{x(x+5)-1(x+5)} \times \frac{x(x+5)+1(x+5)}{x(x-3)-1(x-3)}\)
\(=\frac{(x-3)(x+2)}{(x+5)(x-1)} \times \frac{(x+5)(x+1)}{(x-3)(x-1)}\)
\(=\frac{(x+2)(x+1)}{(x-1)^{2}} \)
(vii) \(\frac{a^{2}-a b+{b}^{2}}{a^{2}+a b} \div \frac{a^{3}+b^{3}}{a^{2}-b^{2}}\)
\( \frac{a^{2}-a b+b^{2}}{a^{2}+a b} \div \frac{a^{3}+b^{3}}{a^{2}-b^{2}}\)
\(=\frac{a^{2}-a b+b^{2}}{a(a+b)} \div \frac{(a+b)\left(a^{2}-a b+b^{2}\right)}{(a+b)(a-b)}\)
\(=\frac{a^{2}-a b+b^{2}}{a(a+b)} \times \frac{(a+b)(a-b)}{(a+b)\left(a^{2}-a b+b^{2}\right)}\)
\(=\frac{a-b}{a(a+b)} \)
\(=\frac{a^{2}-a b+b^{2}}{a(a+b)} \div \frac{(a+b)\left(a^{2}-a b+b^{2}\right)}{(a+b)(a-b)}\)
\(=\frac{a^{2}-a b+b^{2}}{a(a+b)} \times \frac{(a+b)(a-b)}{(a+b)\left(a^{2}-a b+b^{2}\right)}\)
\(=\frac{a-b}{a(a+b)} \)
3. নীচের বীজগাণিতিক ভগ্নাংশগুলি সরলতম আকারে প্রকাশ করি।
(i) \(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}\)
\( \frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}\)
\(=\frac{c}{a b c}+\frac{a}{a b c}+\frac{b}{a b c} \)
\( =\frac{c+a+b}{a b c}\)
\(=\frac{a+b+c}{a b c} \)
\(=\frac{c}{a b c}+\frac{a}{a b c}+\frac{b}{a b c} \)
\( =\frac{c+a+b}{a b c}\)
\(=\frac{a+b+c}{a b c} \)
(ii) \(\frac{a-b-c}{a}+\frac{a+b+c}{a}\)
\( \frac{a-b-c}{a}+\frac{a+b+c}{a}\)
\(=\frac{a-b-c+a+b+c}{a}\)
\(=\frac{2 a}{a}\)
\(=2 \)
\(=\frac{a-b-c+a+b+c}{a}\)
\(=\frac{2 a}{a}\)
\(=2 \)
Koshe dekhi 15 WBBSE Class 8 || বীজগাণিতিক সংখ্যামালার সরলীকরণ কষে দেখি 15 || WBBSE Class-8 (VIII) Koshe dekhi 15 Somadhan || West Bengal Board Class 8 Book Math Solution || অধ্যায় ১৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ
(iii) \(\frac{x^{2}+a^{2}}{a b}+\frac{x-a}{a x}-\frac{x^{3}}{b}\)
\( \frac{x^{2}+a^{2}}{a b}+\frac{x-a}{a x}-\frac{x^{3}}{b}\)
\(=\frac{x\left(x^{2}+a^{2}\right)+b(x-a)-a x x^{3}}{a b x} \)
\( =\frac{x^{3}+a^{2} x+b x-a b-a x^{4}}{a b x} \)
\(=\frac{x\left(x^{2}+a^{2}\right)+b(x-a)-a x x^{3}}{a b x} \)
\( =\frac{x^{3}+a^{2} x+b x-a b-a x^{4}}{a b x} \)
(iv) \(\frac{2 a^{2} b}{3 b^{2} c} \times \frac{c^{4}}{3 a^{3}} \div \frac{4 b
c^{3}}{9 a^{2}}\)
\( \frac{2 a^{2} b}{3 b^{2} c} \times \frac{c^{4}}{3 a^{3}} \div \frac{4 b c^{3}}{9
a^{2}}=\frac{2 a^{2} b}{3 b^{2} c} \times \frac{c^{4}}{3 a^{3}} \times \frac{9 a^{2}}{4 b c^{3}}
\)
\( =\frac{a^{4} b c^{4}}{2 a^{3} b^{3} c^{4}}\)
\(=\frac{a}{2 b^{2}}\quad \left[\because a^{4-3}=a, b^{1-3}=b^{-2}\right] \)
\( =\frac{a^{4} b c^{4}}{2 a^{3} b^{3} c^{4}}\)
\(=\frac{a}{2 b^{2}}\quad \left[\because a^{4-3}=a, b^{1-3}=b^{-2}\right] \)
(v) \(\frac{1}{x^{2}-3 x+2}+\frac{1}{x^{2}-5 x+6}+\frac{1}{x^{2}-4 x+3}\)
\( \frac{1}{x^{2}-3 x+2}+\frac{1}{x^{2}-5 x+6}+\frac{1}{x^{2}-4 x+3}\)
\(=\frac{1}{x^{2}-2 x-x+2}+\frac{1}{x^{2}-3 x-2 x+6}+\frac{1}{x^{2}-3 x-x+3}\)
\(=\frac{1}{x(x-2)-1(x-2)}+\frac{1}{x(x-3)-2(x-3)}+\frac{1}{x(x-3)-1(x-3)}\)
\(=\frac{1}{(x-2)(x-1)}+\frac{1}{(x-3)(x-2)}+\frac{1}{(x-3)(x-1)}\)
\( =\frac{x-3+x-1+x-2}{(x-1)(x-2)(x-3)}=\frac{3 x-6}{(x-1)(x-2)(x-3)} \)
\(=\frac{3(x-2)}{(x-1)(x-2)(x-3)}=\frac{3 }{(x-1)(x-3)} \)
\(=\frac{1}{x^{2}-2 x-x+2}+\frac{1}{x^{2}-3 x-2 x+6}+\frac{1}{x^{2}-3 x-x+3}\)
\(=\frac{1}{x(x-2)-1(x-2)}+\frac{1}{x(x-3)-2(x-3)}+\frac{1}{x(x-3)-1(x-3)}\)
\(=\frac{1}{(x-2)(x-1)}+\frac{1}{(x-3)(x-2)}+\frac{1}{(x-3)(x-1)}\)
\( =\frac{x-3+x-1+x-2}{(x-1)(x-2)(x-3)}=\frac{3 x-6}{(x-1)(x-2)(x-3)} \)
\(=\frac{3(x-2)}{(x-1)(x-2)(x-3)}=\frac{3 }{(x-1)(x-3)} \)
(vi)\(\frac{1}{x-1}+\frac{1}{x+1}+\frac{2 x}{x^{2}+1}+\frac{4 x^{3}}{x^{4}+1}\)
\( \frac{1}{x-1}+\frac{1}{x+1}+\frac{2 x}{x^{2}+1}+\frac{4 x^{3}}{x^{4}+1} \)
\( =\frac{x+1+x-1}{(x-1)(x+1)}+\frac{2 x}{x^{2}+1}+\frac{4 x^{3}}{x^{4}+1} \)
\( =\frac{2 x}{x^{2}-1}+\frac{2 x}{x^{2}+1}+\frac{4 x^{3}}{x^{4}+1} \)
\( =2 x \cdot \frac{x^{2}+1+x^{2}-1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}+\frac{4 x^{3}}{x^{4}+1} \)
\( =2 x \cdot \frac{2 x^{2}}{\left(x^{2}\right)^{2}-(1)^{2}}+\frac{4 x^{3}}{x^{4}+1}=\frac{4 x^{3}}{x^{4}-1}+\frac{4 x^{3}}{x^{4}+1}\)
\(=4 x^{3} \cdot \frac{x^{4}+x+x^{4}-1}{\left(x^{4}-1\right)\left(x^{4}+1\right)}=4 x^{3} \frac{2 x^{4}}{\left(x^{4}\right)^{2}-(1)^{2}}=\frac{8 x^{7}}{x^{8}-1} \)
\( =\frac{x+1+x-1}{(x-1)(x+1)}+\frac{2 x}{x^{2}+1}+\frac{4 x^{3}}{x^{4}+1} \)
\( =\frac{2 x}{x^{2}-1}+\frac{2 x}{x^{2}+1}+\frac{4 x^{3}}{x^{4}+1} \)
\( =2 x \cdot \frac{x^{2}+1+x^{2}-1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}+\frac{4 x^{3}}{x^{4}+1} \)
\( =2 x \cdot \frac{2 x^{2}}{\left(x^{2}\right)^{2}-(1)^{2}}+\frac{4 x^{3}}{x^{4}+1}=\frac{4 x^{3}}{x^{4}-1}+\frac{4 x^{3}}{x^{4}+1}\)
\(=4 x^{3} \cdot \frac{x^{4}+x+x^{4}-1}{\left(x^{4}-1\right)\left(x^{4}+1\right)}=4 x^{3} \frac{2 x^{4}}{\left(x^{4}\right)^{2}-(1)^{2}}=\frac{8 x^{7}}{x^{8}-1} \)
(vii)\(\frac{b^{2}-5 b}{3 b-4 a} \times \frac{9 b^{2}-16 a^{2}}{b^{2}-25} \div
\frac{3 b^{2}+4 a b}{a b+5 a}\)
\( \frac{b^{2}-5 b}{3 b-4 a} \times \frac{9 b^{2}-16 a^{2}}{b^{2}-25} \div \frac{3
b^{2}+4 a b}{a b+5 a}\)
\(=\frac{b(b-5)}{3 b-4 a} \times \frac{(3 b)^{2}-(4 a)^{2}}{(b)^{2}-(5)^{2}} \times \frac{a b+5 a}{3 b^{2}+4 a b}\)
\(=\frac{b(b-5)}{(3 b-4 a)} \times \frac{(3 b+4 a)(3 b-4 a)}{(b+5)(b-5)} \times \frac{a(b+5)}{b(3 b+4 a)}\)
\(=a \)
\(=\frac{b(b-5)}{3 b-4 a} \times \frac{(3 b)^{2}-(4 a)^{2}}{(b)^{2}-(5)^{2}} \times \frac{a b+5 a}{3 b^{2}+4 a b}\)
\(=\frac{b(b-5)}{(3 b-4 a)} \times \frac{(3 b+4 a)(3 b-4 a)}{(b+5)(b-5)} \times \frac{a(b+5)}{b(3 b+4 a)}\)
\(=a \)
(viii) \(\frac{b+c}{(a-b)(a-c)}+\frac{c+a}{(b-a)(b-c)}+\frac{a+b}{(c-a)(c-b)}\)
\( \frac{b+c}{(a-b)(a-c)}+\frac{c+a}{(b-a)(b-c)}+\frac{a+b}{(c-a)(c-b)}\)
\(=\frac{-(b+c)}{(a-b)(c-a)}+\frac{-(c+a)}{(a-b)(b-c)}+\frac{-(a+b)}{(c-a)(b-c)} \)
\( =\frac{-(b+c)}{(a-b)(c-a)}-\frac{(c+a)}{(a-b)(b-c)}-\frac{(a+b)}{(c-a)(b-c)}\)
\(=-\left[\frac{(b+c)(b-c)+(c+a)(c-a)+(a+b)(a-b)}{(a-b)(b-c)(c-a)}\right]\)
\( =-\left[\frac{b^{2}-c^{2}+c^{2}-a^{2}+a^{2}-b^{2}}{(a-b)(b-c)(c-a)}\right] \)
\(=\frac{0}{(a-b)(b-c)(c-a)}=0 \)
\(=\frac{-(b+c)}{(a-b)(c-a)}+\frac{-(c+a)}{(a-b)(b-c)}+\frac{-(a+b)}{(c-a)(b-c)} \)
\( =\frac{-(b+c)}{(a-b)(c-a)}-\frac{(c+a)}{(a-b)(b-c)}-\frac{(a+b)}{(c-a)(b-c)}\)
\(=-\left[\frac{(b+c)(b-c)+(c+a)(c-a)+(a+b)(a-b)}{(a-b)(b-c)(c-a)}\right]\)
\( =-\left[\frac{b^{2}-c^{2}+c^{2}-a^{2}+a^{2}-b^{2}}{(a-b)(b-c)(c-a)}\right] \)
\(=\frac{0}{(a-b)(b-c)(c-a)}=0 \)
(ix)
\(\frac{b+c-a}{(a-b)(a-c)}+\frac{c+a-b}{(b-c)(b-a)}+\frac{a+b-c}{(c-a)(c-b)}\)
\( \frac{b+c-a}{(a-b)(a-c)}+\frac{c+a-b}{(b-c)(b-a)}+\frac{a+b-c}{(c-a)(c-b)}
\)
\( =\frac{-b-c+a}{(a-b)(c-a)}+\frac{-c-a+b}{(b-c)(a-b)}+\frac{-a-b+c}{(c-a)(b-c)}\)
\(=\frac{(-b-c+a)(b-c)+(-c-a+b)(c-a)+(-a-b+c)(a-b)}{(a-b)(b-c)(c-a)}\)
\( =\frac{a(b-c)-(b+c)(b-c)+b(c-a)-(c+a)(c-a)+c(a-b)-(a+b)(a-b)}{(a-b)(b-c)(c-a)} \)
\( =\frac{a b-a c-b^{2}+c^{2}+b c-a b-c^{2}+a^{2}+a c-b c-a^{2}+b^{2}}{(a-b)(b-c)(c-a)}\)
\(=\frac{0}{(a-b)(b-c)(c-a)}=0 \)
\( =\frac{-b-c+a}{(a-b)(c-a)}+\frac{-c-a+b}{(b-c)(a-b)}+\frac{-a-b+c}{(c-a)(b-c)}\)
\(=\frac{(-b-c+a)(b-c)+(-c-a+b)(c-a)+(-a-b+c)(a-b)}{(a-b)(b-c)(c-a)}\)
\( =\frac{a(b-c)-(b+c)(b-c)+b(c-a)-(c+a)(c-a)+c(a-b)-(a+b)(a-b)}{(a-b)(b-c)(c-a)} \)
\( =\frac{a b-a c-b^{2}+c^{2}+b c-a b-c^{2}+a^{2}+a c-b c-a^{2}+b^{2}}{(a-b)(b-c)(c-a)}\)
\(=\frac{0}{(a-b)(b-c)(c-a)}=0 \)
Koshe dekhi 15 WBBSE Class 8 || বীজগাণিতিক সংখ্যামালার সরলীকরণ কষে দেখি 15 || WBBSE Class-8 (VIII) Koshe dekhi 15 Somadhan || West Bengal Board Class 8 Book Math Solution || অধ্যায় ১৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ
(x)
\(\frac{\frac{a^{2}}{x-a}+\frac{b^{2}}{x-b}+\frac{c^{2}}{x-c}+a+b+c}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}}\)
\(
\frac{\frac{a^{2}}{x-a}+\frac{b^{2}}{x-b}+\frac{c^{2}}{x-c}+a+b+c}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}}
\)
\( =\frac{\frac{a^{2}}{x-a}+a+\frac{b^{2}}{x-b}+b+\frac{c^{2}}{x-c}+c}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}} \)
\( =\frac{\frac{a^{2}+a x-a^{2}}{x-a}+\frac{b^{2}+b x-b^{2}}{x-b}+\frac{c^{2}+c x-c^{2}}{x-c}}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}} \)
\( =\frac{\frac{a x}{x-a}+\frac{b x}{x-b}+\frac{c x}{x-c}}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}}=\frac{x\left(\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}\right)}{\left(\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}\right)}=x \)
\( =\frac{\frac{a^{2}}{x-a}+a+\frac{b^{2}}{x-b}+b+\frac{c^{2}}{x-c}+c}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}} \)
\( =\frac{\frac{a^{2}+a x-a^{2}}{x-a}+\frac{b^{2}+b x-b^{2}}{x-b}+\frac{c^{2}+c x-c^{2}}{x-c}}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}} \)
\( =\frac{\frac{a x}{x-a}+\frac{b x}{x-b}+\frac{c x}{x-c}}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}}=\frac{x\left(\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}\right)}{\left(\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}\right)}=x \)
(xi)
\(\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}-\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)
\div\left(\frac{a+b}{a-b}-\frac{a-b}{a+b}\right) \times\left(\frac{a}{b}+\frac{b}{a}\right)\)
\( \left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}-\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)
\div\left(\frac{a+b}{a-b}-\frac{a-b}{a+b}\right) \times\left(\frac{a}{b}+\frac{b}{a}\right) \)
\( =\frac{\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)} \div\left\{\frac{(a+b)^{2}-(a-b)^{2}}{(a+b)(a-b)}\right\} \times\left(\frac{a^{2}+b^{2}}{a b}\right)\)
\(=\frac{4 a^{2} b^{2}}{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)} \div \frac{4 a b}{a^{2}-b^{2}} \times \frac{a^{2}+b^{2}}{a b}\)
\(=\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)} \times \frac{\left(a^{2}-b^{2}\right)}{4 a b} \times \frac{\left(a^{2}+b^{2}\right)}{a b}=1\)
\( =\frac{\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)} \div\left\{\frac{(a+b)^{2}-(a-b)^{2}}{(a+b)(a-b)}\right\} \times\left(\frac{a^{2}+b^{2}}{a b}\right)\)
\(=\frac{4 a^{2} b^{2}}{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)} \div \frac{4 a b}{a^{2}-b^{2}} \times \frac{a^{2}+b^{2}}{a b}\)
\(=\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)} \times \frac{\left(a^{2}-b^{2}\right)}{4 a b} \times \frac{\left(a^{2}+b^{2}\right)}{a b}=1\)
(xii) \(\frac{b+c}{b c}(b+c-a)+\frac{c+a}{c a}(c+a-b)+\frac{a+b}{a b}(a+b-c)\)
\( \frac{b+c}{b c}(b+c-a)+\frac{c+a}{c a}(c+a-b)+\frac{a+b}{a b}(a+b-c) \)
\( =\frac{(b+c)(b+c-a)}{b c}+\frac{(c+a)(c+a-b)}{c a}+\frac{(a+b)(a+b-c)}{a b}\)
\(=\frac{a(b+c)(b+c-a)+b(c+a)(c+a-b)+c(a+b)(a+b-c)}{a b c}\)
\(=\frac{(a b+a c)(b+c-a)+(b c+b a)(c+a-b)+(a c+b c)(a+b-c)}{a b c}\)
\(=\frac{a b^{2}+2 a b c-a^{2} b+a c^{2}-a^{2} c+b c^{2}+2 a b c-b^{2} c+a^{2} b-a b^{2}+a^{2} c+2 a b c-a c^{2}+b^{2} c-b c^{2}}{a b c}=\frac{6 a b c}{a b c}=6 \)
বিকল্প পদ্ধতি :
\( \frac{b+c}{b c}(b+c-a)+\frac{c+a}{c a}(c+a-b)+\frac{a+b}{a b}(a+b-c) \)
\( =\left(\frac{b}{b c}+\frac{c}{b c}\right)(b+c-a)+\left(\frac{c}{c a}+\frac{a}{c a}\right)(c+a-b)+\left(\frac{a}{a b}+\frac{b}{a b}\right)(a+b-c) \)
\( =\left(\frac{1}{c}+\frac{1}{b}\right)(b+c-a)+\left(\frac{1}{a}+\frac{1}{c}\right)(c+a-b)+\left(\frac{1}{b}+\frac{1}{a}\right)(a+b-c)\)
\(=\frac{1}{c}(b+c-a)+\frac{1}{b}(b+c-a)+\frac{1}{a}(c+a-b)+\frac{1}{c}(c+a-b)+\frac{1}{b}(a+b-c)+\frac{1}{a}(a+b-c)\)
\(=\frac{1}{c}(b+c-a+c+a-b)+\frac{1}{b}(b+c-a+a+b-c)+\frac{1}{a}(c+a-b+a+b-c)\)
\(=\frac{1}{c} \times 2 c+\frac{1}{b} \times 2 b+\frac{1}{a} \times 2 a=2+2+2=6 \)
\( =\frac{(b+c)(b+c-a)}{b c}+\frac{(c+a)(c+a-b)}{c a}+\frac{(a+b)(a+b-c)}{a b}\)
\(=\frac{a(b+c)(b+c-a)+b(c+a)(c+a-b)+c(a+b)(a+b-c)}{a b c}\)
\(=\frac{(a b+a c)(b+c-a)+(b c+b a)(c+a-b)+(a c+b c)(a+b-c)}{a b c}\)
\(=\frac{a b^{2}+2 a b c-a^{2} b+a c^{2}-a^{2} c+b c^{2}+2 a b c-b^{2} c+a^{2} b-a b^{2}+a^{2} c+2 a b c-a c^{2}+b^{2} c-b c^{2}}{a b c}=\frac{6 a b c}{a b c}=6 \)
বিকল্প পদ্ধতি :
\( \frac{b+c}{b c}(b+c-a)+\frac{c+a}{c a}(c+a-b)+\frac{a+b}{a b}(a+b-c) \)
\( =\left(\frac{b}{b c}+\frac{c}{b c}\right)(b+c-a)+\left(\frac{c}{c a}+\frac{a}{c a}\right)(c+a-b)+\left(\frac{a}{a b}+\frac{b}{a b}\right)(a+b-c) \)
\( =\left(\frac{1}{c}+\frac{1}{b}\right)(b+c-a)+\left(\frac{1}{a}+\frac{1}{c}\right)(c+a-b)+\left(\frac{1}{b}+\frac{1}{a}\right)(a+b-c)\)
\(=\frac{1}{c}(b+c-a)+\frac{1}{b}(b+c-a)+\frac{1}{a}(c+a-b)+\frac{1}{c}(c+a-b)+\frac{1}{b}(a+b-c)+\frac{1}{a}(a+b-c)\)
\(=\frac{1}{c}(b+c-a+c+a-b)+\frac{1}{b}(b+c-a+a+b-c)+\frac{1}{a}(c+a-b+a+b-c)\)
\(=\frac{1}{c} \times 2 c+\frac{1}{b} \times 2 b+\frac{1}{a} \times 2 a=2+2+2=6 \)
(xiii) \(\frac{y^{2}+y z+z^{2}}{(x-y)(x-z)}+\frac{z^{2}+z x+x^{2}}{(y-z)(y-
x)}+\frac{x^{2}+x y+y^{2}}{(z-x)(z-y)}\)
\( \frac{y^{2}+y z+z^{2}}{(x-y)(x-z)}+\frac{z^{2}+z
x+x^{2}}{(y-z)(y-x)}+\frac{x^{2}+x y+y^{2}}{(z-x)(z-y)} \)
\( =\frac{-\left(y^{2}+y z+z^{2}\right)}{(x-y)(z-x)}+\frac{-\left(z^{2}+z x+x^{2}\right)}{(y-z)(x-y)}+\frac{-\left(x^{2}+x y+y^{2}\right)}{(z-x)(y-z)}\)
\(=-\left[\frac{(y-z)\left(y^{2}+y z+z^{2}\right)+(z-x)\left(z^{2}+z x+x^{2}\right)+(x-y)\left(x^{2}+x y+y^{2}\right)}{(x-y)(y-z)(z-x)}\right]\)
\(=-\left[\frac{y^{3}-z^{3}+z^{3}-x^{3}+x^{3}-y^{3}}{(x-y)(y-z)(z-x)}\right]=-\frac{0}{(x-y)(y-z)(z-x)}=0 \)
\( =\frac{-\left(y^{2}+y z+z^{2}\right)}{(x-y)(z-x)}+\frac{-\left(z^{2}+z x+x^{2}\right)}{(y-z)(x-y)}+\frac{-\left(x^{2}+x y+y^{2}\right)}{(z-x)(y-z)}\)
\(=-\left[\frac{(y-z)\left(y^{2}+y z+z^{2}\right)+(z-x)\left(z^{2}+z x+x^{2}\right)+(x-y)\left(x^{2}+x y+y^{2}\right)}{(x-y)(y-z)(z-x)}\right]\)
\(=-\left[\frac{y^{3}-z^{3}+z^{3}-x^{3}+x^{3}-y^{3}}{(x-y)(y-z)(z-x)}\right]=-\frac{0}{(x-y)(y-z)(z-x)}=0 \)
Koshe dekhi 15 WBBSE Class 8 || বীজগাণিতিক সংখ্যামালার সরলীকরণ কষে দেখি 15 || WBBSE Class-8 (VIII) Koshe dekhi 15 Somadhan || West Bengal Board Class 8 Book Math Solution || অধ্যায় ১৫ পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদ
এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি করা বা সম্পাদনা করা নিষিদ্ধ। ভারতীয় Copywright আইন
1957 এর ধারা 63 অনুযায়ী, এই ফাইলটির সমস্ত অধিকার 'ছাত্র মিত্র Mathematics' অ্যাপ দ্বারা সংরক্ষিত। ছাত্র
মিত্রের অনুমতি ছাড়া, এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি করা বা সম্পাদনা করা আইনত
দন্ডনীয় অপরাধ। কেউ ছাত্র মিত্রের অনুমতি ছাড়া, এই Page টি বা এই Website টির কোন প্রকার বিষয়বস্তু কপি বা
সম্পাদনা করলে ছাত্র মিত্র কতৃপক্ষ তার বিরুদ্ধে সকল প্রকার কঠোর আইনি পদক্ষেপ করবে।
West Bengal Board of Secondary Education Official Site
Class 8 : গণিত প্রভা (অষ্টম শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali.
Class 7 : গণিত প্রভা (সপ্তম শ্রেণি) বইয়ের সমস্ত সমাধান
www.wbresults.nic.in Official
Class 10 : মাধ্যমিক গণিত প্রকাশ (দশম শ্রেণি) বইয়ের সমস্ত সমাধান Class 10 Maths Solution WBBSE Bengali
Class 6 : গণিত প্রভা (ষষ্ঠ শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali
Class 9 : গণিত প্রকাশ (নবম শ্রেণি) বইয়ের সমাধান Maths Solution WBBSE Bengali
আজই Install করুন Chatra Mitra
Class 8 : গণিত প্রভা (অষ্টম শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali.
Class 7 : গণিত প্রভা (সপ্তম শ্রেণি) বইয়ের সমস্ত সমাধান
www.wbresults.nic.in Official
Class 10 : মাধ্যমিক গণিত প্রকাশ (দশম শ্রেণি) বইয়ের সমস্ত সমাধান Class 10 Maths Solution WBBSE Bengali
Class 6 : গণিত প্রভা (ষষ্ঠ শ্রেণি) বইয়ের সমস্ত সমাধান Maths solutions for WBBSE in Bengali
Class 9 : গণিত প্রকাশ (নবম শ্রেণি) বইয়ের সমাধান Maths Solution WBBSE Bengali
আজই Install করুন Chatra Mitra